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Multidimensional Gray transformations in cryptographic applications 

By analogy with the discrete Fourier transform algorithms, variants of constructing 
the methods of discrete Gray transformations of one-dimensional (vector data 
transformations), two-dimensional (transformations on the plane), and three-
dimensional (spatial transformations) of digital data are considered. 

 
Gray's transformations (GT) are treated further as a generalization of the 

concept of Gray codes (CG). The Gray codes, proposed in 1953 in response to 
requests for engineering practice regarding the construction of optimum ambiguity 
errors in the angle-code converters [1], at the dawn of their appearance attracted the 
attention not only of mathematicians but also of a wide range of developers a variety 
of electronic equipment. A distinctive feature of the Gray codes is that in the binary 
system, when changing from an image of one number to an image of a neighboring 
higher or next minor number, the numbers (1 to 0 or vice versa) change only in one 
digit of the number. Such codes are referred to a group of binary codes with a single 
Hamming distance [2]. Gray's code is not the only one in this group, but its use in 
communication systems, analog-digital transformations and in other fields of science 
and technology became preferable for a number of reasons.   

Apparently, they turned out to be out of the field of view, both for 
mathematicians and for developers of electronic equipment, of the possibility of 
constructing codes that are opposite in direction to the formation of classical CG. In 
the known (classical) scheme, the process of forming forward and reverse codes 
develops from left to right. In this case, the highest (left) digit of the converted 
number does not change under both forward and reverse transformations. At the 
same time, it is possible to construct a scheme of transformation in the general case 
of m-ary codes, which is inverse in the direction of formation of the classical (left-
handed) PG. In this class of right-handed transformations, the value of the lower 
(right) digit of the converted number remains unchanged under forward and 
backward transformations. 

The combination of left- and right-hand Gray transformations (both direct 
and inverse) together with the inverse code permutation operation led to the 
possibility of constructing combined or composite Gray codes (CGC) [3]. The 
application of the SKG proved to be very successful in problems of determining the 
structure and interrelation of symmetric systems of Walsh functions, discrete 
Vilenkin-Krestenson functions, cryptography, coding and other applications [4]. The 
simplest physical essence of classical direct GT is revealed by its structural-logic 
scheme, an example of which for a four-point transformation of binary data is shown 
in Fig. 1. 
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Fig. 1. Structural-logical scheme of the formation algorithm  
Gray Direct Left-side Binary Code  
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Circuit shown in Fig. 2 displays the inverse transformations (2).  

 
Fig. 2. Structural-logical scheme of the formation algorithm 

Gray Backward Left-side Binary Code  

From the systems of equations (1) - (2) it can be seen, that the GT process 
develops from left to right. For this reason, the classical Gray transformations are 
called left-handed. Alternative classical SGs are right-handed transformations, the 
method of formation of which is illustrated in Fig. 3. 

 
                а)   direct conversion                                  b)   backward conversion 

Fig. 3. Structural-logical scheme of the formation algorithm 
Gray Right-side Binary Code  

Algebraic equations corresponding to the algorithms for the formation of 
right side Gray codes (Fig. 3) are as follows:  
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 We reduce the main Gray operators to Table. 1, by adding to it a number of 
additional operations. 

Table 1. 
A group of simple Gray operators  

Notation 
operator The operation to be performed 

0 Preservation of source data 
1 Inverse permutation 
2 Direct left-side GT 
3 The reverse left-side GT 
4 Direct right-side GT 
5 The reverse right-sided GT 
6 Cyclic shift one digit to the right 
7 Cyclic shift one digit to the left 

The matrix forms of third-order operators are shown in Table 2. 

Table 2. 
Matrix forms of simple Gray operators 

1 0 0
0 0 1 0

0 0 1
=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1 1 0

2 0 1 1
0 0 1

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1 0 0

4 1 1 0
0 1 1

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 1 0

6 0 0 1
1 0 0

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

0 0 1
1 0 1 0

1 0 0
=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1 1 1

3 0 1 1
0 0 1

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1 0 0

5 1 1 0
1 1 1

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 0 1

7 1 0 0
0 1 0

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 The operators of Gray presented in Table. 1 and 2, as well as the CGC 
compiled on their basis, is sufficient for constructing a complete system consisting 
of 28 Walsh functions W  of the eighth order and objectively associated with the 
third-order indicator matrices (MI).  
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 Indicator matrices wJ  of systems of Walsh functions W  are right-sided 
symmetric (0, 1)-matrices (that is, matrices symmetric with respect to the auxiliary 
diagonal), nondegenerate over 2F . 

Any Walsh system of order N  can be formed by an appropriate 
permutation of rows (or columns) of the Walsh-Paley matrix P . The line number 

wk  of the system W , into which the row рk  of the Paley matrix moves is found 
by the formula: 

 , 0, 1w p pwk k k N= ⋅ = −J ,  
 

from which, as a consequence, follows: 

 Assertion 1: An arbitrary Walsh system W  of order N  is uniquely 
determined by its indicator matrix wJ  of order n . 

We formulate a number of fundamental propositions, which form the basis 
of the construction of the theory of GT. 

Axiom 1. An arbitrary Gray code (simple or composite) is the generator of 
the multiplicative cyclic group. 

Axiom 2. The operator ⊥  of right-sided transposition performs a rotation of 
the square matrices relative to the auxiliary diagonals. 

Lemma 1. The composite Gray code T⋅G G , where G  is the matrix form 
of an arbitrary CGC, corresponds to a left-sided symmetric matrix. 

Evidence. From that ( ) T T T⋅ = ⋅A B B A  it follows, that ( )T T⋅ =G G  

( )T T T T= ⋅ = ⋅G G G G  which is true, if only T⋅G G  - a left-sided symmetric 
matrix. ■ 

Lemma 2. A right-sided transposition ⊥  of the CGC is equivalent to 
inversion of this code, which reduces to reversing the order of the simple Gray 
codes. ■ 

In fact, 2 1 2 1 2 1( )g g g g g g⊥ ⊥ ⊥⋅ = ⋅ = ⋅  since any simple Gray code g  is 
symmetric with respect to the auxiliary diagonal. 

Lemma 3. A symmetric matrix of a transformation corresponds to a 
symmetric CGC. 

Evidence. By definition, a symmetric composite is a code s
⊥= ⋅ω⋅G G G , 

in which G  is an arbitrary SCG, and ω− a kernel that is a simple or symmetric 
Gray compound code. We have 

( ) ( )s s
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= ⋅ω⋅ = ⋅ω ⋅ = ⋅ω⋅ =G G G G G G G G . ■ 
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 Assertion 2: There exist CGC, forming cyclic groups of maximal order L , 
(m-sequence), defined by the relation 2 1nL = − , where is the order n  of indicator 
matrices of simple codes, which are components of the CGC. 

 We say that those CGС are primitive with respect to the IM order n , the 
sequence of powers of which, starting with the zero degree, forms an m-sequence. 
sequences also generate individual unbalanced SCGs. As an example, we indicate 
the code = 1 g⋅G , in which g  - one of the simple codes with identifiers, presented 
in Table. 2. Additional information on non-symmetric primitive compound codes is 
given in Table. 3. 

Table 3. 
Primitive Gray compound codes 

16n =  32n =  64n =  128n =  256n =

2224244 2225355 2252435 2425535 22533435
2225524 2225535 2433435 2433534 22534335
2252435 2244424 2435225 2435334 24334225
2255535 2255524 2522534 22524224 25224334
2433435 2442224 25224334 22533334 2222535224

By analogy with the term "discrete Fourier transforms" (DFT), we introduce 
the term discrete Gray transformations (DGTs), dividing them into one-dimensional, 
two-dimensional, and three-dimensional DGT. The most useful is still a 
generalization to the case of two dimensions, since it is widely used in image 
processing. 

Like a two-dimensional DFT, a two-dimensional DGT can be calculated 
sequentially in two dimensions. To this end, it is sufficient to define one-
dimensional DGTs of all image lines, and then calculate the one-dimensional DGT s 
of all columns in the resulting "image". In this case, the results of one-dimensional 
DGTs should be written down to the place of the initial data for these DGTs. 

Conclusions 

Despite more than half a century (1953) history of its discovery, Gray's codes 
are still far from complete. The additions of the classical Gray codes proposed in 
this paper by the so-called right-handed and composite codes significantly extend 
the boundaries of the application of Gray's transformations in many fields of science 
and technology. 
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