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Robust control of system with nonorthogonal MEMS arrays 

The paper deals with synthesis of robust system assigned for operation on unmanned 
aerial vehicles. A feature of the system lies in using nonorthoginal arrays of 
gyroscopes designed on microelectromechanical technologies. Synthesis of the 
controller was carried out by means of the robust structural synthesisis. Analysis of 
the possibility to use nonorthogonal arrays of inertial sensores was given. Results of 
synthesied system simulation are represented. The obtained results can be useful for 
moving vehicles of the wide class. 

Introduction and problem statement 

Nowadays using of robust control is one of the modern trends in design of 
complex systems. It is known also that accuracy and reliability of navigation 
information is of great importance for successful functioning of the complex control 
system in difficult conditions of real operation. Obtaining of navigation information 
for complex control systems operating on the board of moving vehicles can be 
implemented by means of accelerometers and gyroscopes manufactured on 
technologies of micro-electro-mechanical systems (MEMS). Such an approach 
ensures low cost, small sized and low power consumption of complex control 
systems. To improve accuracy of navigation information is possible using structural 
redundancy of primary navigation measuring instruments based on nonorthogonal 
MEMS arrays [1]. The proposed approach can be considered on the basis of the 
robust system with redundant nonorthogonal measuring system assigned for 
operation on unmanned aerial vehicles (UAVs). 

There are two the most widespread approaches to implementation of 
structural redundancy of navigation measuring instruments. The first approach lies 
in using redundant inertial measuring instruments. In this case it is necessary to use 
the highly productive computing unit that complicates architecture and increases the 
price of the control system as a whole. The second approach is using of redundant 
sensors as components of the single measuring instrument. In this case requirements 
to computational burden and capacity of data transmission channel are greatly less in 
comparison with the first approach. So, the second approach to using of structural 
redundancy seems more preferable [2]. 

There are some configurations of nonorthogonal redundant measuring 
instruments based on MEMS arrays of inertial sensors [3]. Choice of configuration 
is defined by the concrete requirements to the control system operated on UAV. 

The generalised structural scheme of UAV navigation system using 
redundant measuring instruments is given in Fig. 1. 
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Fig. 1. The structural scheme of the redundant inertial measuring system 

Respectively, the structural scheme of the system of UAV motion control 
can be represented by the scheme shown in Fig. 2. 
 

 
 

Fig. 2. The structural scheme of the system, which controls UAV motion: C is the 
controller; M is the motor;  

RMS is redundant measuring instrument 

The problem statement foresees solving some interrelated tasks. The first 
task is choice of nonorthogonal redundant configuration and aggregation algorithm. 
The main goal of the aggregation algorithm is transformation of data entering from 
MEMS arrays of inertial sensors into projections of the navigation parameters 
(accelerations, angular rates) onto the axes of the navigation reference frame. The 
second task is design of the robust controller based on the H∞-synthesis. 

Choice of nonorthogonal configuration of inertial sensors 

Different types of nonorthogonal configurations based on MEMS arrays of 
inertial sensors (gyroscopes) are represented in [3]. To simplify process of robust 
system design it is convenient to consider nonorthogonal configuration based on 
single (uniaxial) sensors. It is known that one of the most widespread nonortogonal 
configurations is based on such geometrical figure as a cone [4]. In this case 
sensitivity axes of sensors are oriented along a cone’s generatrices. 

The results of the comparative analysis of accuracy for different 
nonorthogonal configurations of uniaxial sensors are represented in Table 1 [5]. This 
table includes data about values of traces of the correlation matrices of errors for 
various nonorthogonal redundant configurations in different situations of sensor 
failures. 
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The following notations are used in Fig. 4: xyz is the navigation reference 
frame; 654 llllll 321  is the measuring reference frame; angles αθ,  are defined in the 
following way: θ=54°44', α=36º. 

Matrix of directional cosines for the above presented nonorthogonal 
configuration becomes 
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(1) 
The connection between the primary information measured by sensors and 

navigation information about angular rate can be represented in the following form 
[4] 

Hщl = ,                                                                                                     (2) 

where [ ]Tnlll ...21  is the vector of projections of the angular rate, measured in 

the measuring reference frame; [ ]T
zyx ωωω  is the vector of projections of the 

angular rate in the navigation reference frame; n  is quantity of the inertial sensors 
in the measuring redundant instrument. The matrix H  is called the matrix of 
transformation between navigation reference frame and redundant measuring frame. 

Taking into consideration (2), the formula for angular rate determination can 
be represented in the following form [4] 

lHщ 1−= .                                                                                                   (3) 
The expression for the pseudoinverse matrix based on the Moore-Penrose 

algorithm can be represented in the following form 
][)( 11111 −

ω
−
ω
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TT HHHHHHH .                          

(4) 
Expressions (1) – (4) describe the aggregation algorithm for the measuring 

system represented in Fig. 1. 

Mathematical model of plant 

The above stated problem can be solved on the example of a small UAV 
assigned for observation of weather conditions including temperature, atmosphere 
pressure, humidity and wind above the ocean and remote terrains [6]. The linearized 
model of a plant can be represented by the set of equations in the state space 
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Dynamic of the longitudinal motion of UAV can be described by the state 
vector [6, 7] 

,],,,,,[ TΩθ= hqwvx  
where wv,  are horizontal and vertical components of the true airspeed; q  is the 
pitch angular rate; θ  is an angle of the pitch; h  is the flight altitude; Ω  is an 
angular rate of the motor (in revolutions per minute). Control of the longitudinal 
motion is implemented by means of elevator deviations and control of engine thrust. 
So, the control vector looks like 

,],[ T
theu δδ=  

where the δδ ,  are deviations of elevator and steering wheel for traction control, 
respectively. 

The output vector can be represented in the following form 
],,,,[ hqVa θα=y , 

where aV  is the true airspeed, α  is an angle of the attack. 
The linearized equations of the longitudinal motion can b described in the 

following way 
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(6) 
Taking into consideration the expression (6), matrices A  and B  of the state 

space model (5) can be represented in the following form 

,
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(7) 
Elements of the matrix A in (7) are components depending on UAV 

aerodynamics and motor construction. The matrix B in (7) is used for 
implementation of two controls [8]. The above given matrices (7) are matrices of 
states A and observations B. Nowadays synthesis of robust control in many cases is 
based on the state space models (5). For the above mentioned UAV such matrices 
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can be obtained using AeroSim package of MatLab system [9]. So, matrices of state, 
control and observation in the numerical form look like 
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C . 

For the model of the lateral motion the vector of states becomes 
,],,,,[ Trpv ψϕ=x  where β  is the angle of slide; rp,  are angular rates of roll and 

yaw, ψϕ,  are angles of roll and yaw [10]. Vector of control is defined as 

,],[ T
rδδ= αu  where ra δδ ,  are angles of deviations of ailerons and rudder. The 

vector of output looks like Trpy ],,,,[ ψϕβ=  [6, 7]. 
The linearized equations of the lateral motion can be written in the following 

form 
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(8) 
Matrices of the aerodynamic coefficients A  and B  look like 
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The matrix (9) obtained on expressions (8) in the generalized case can be 
used for two controls [8]. The expressions (6) – (9) were obtained taking into 
consideration the reference frame represented in Fig. 1. Such reference frames and 
notations correspond to foreign technical literature [7, 11]. Here Y  means the first 
derivative of the lateral force by the appropriate parameters; L  and N  are moments 
by the roll and yaw. The numerical matrices of state, control and observation 
obtained by means of AeroSim Package look like 
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It should be noted that matrix D  is zero matrix for both longitudinal and 
lateral motions. 

Robust structural synthesis 

∞H -synthesis is one of methods using for design of the feedback control 
systems based on determination of the bounded frequency responses as functions of 
the singular numbers. There is an approach for robust systems design, when the 
sufficient condition of the robust stability is formulated in the form of norms, 
bounded by the weighting transfer functions. This approach is accepted in such 
automated computer-aided facilities for the robust systems optimal design as the 
Robust Control Toolbox [12]. 

The synthesized system consists of the plant and controller described by the 
matrix transfer functions )(sG , )(sK  respectively. These transfer functions must be 
fractionally-rational and proper. The generalized control object represents a system 
with two inputs and two outputs. The vector w represents the external output, 
which, in the general case, consists of disturbances, measurement noise and 
command signals. The input vector u  represents the control signals. The output 
vector z  determines the quality of the control processes. For example, it can be 
characterized by the command signal tracking error, which must be equal to zero in 
the ideal case. The output vector y  represents the vector of the observed signals, 
which are used for feedback organization. 

There are the different statements of the tasks, which can be solved by the 
method of mixed sensitivity. One of these problems can be described by the 
generalized system and the optimization criterion in the following form [12] 
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(10) 
In the problem (10) the necessity to limit an error of the command signal 

tracking, the control signal and the output signal respectively are taking into 
account. The structural chart, which explains the statement of this problem, is 
represented in Fig. 5. 
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Fig.5. The structural chart for the method of mixed sensitivity with bounding of the 

error of the command signal tracking, 
the control signal and the output signal 

The singular numbers of the closed transfer matrix functions from the 
command signal r to the signals of an error, input signals and output signal e , u , 
y  [12] can be used for the quantitative estimation of the stability margins and 
frequency responses of the system. 

Results of the synthesized system with the robust controller are represented 
in Figures 6. 

 Simulation results prove robust stability of the system in conditions of parametrical 
disturbances. 
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The aggregation algorithm for determination of navigation information entering 
from the redundant measuring instrument was obtained. The mathematical model of 
UAV longitudinal and lateral motions taking into consideration redundant measuring 
instrument based on inertial sensors has been done. The robust control system based 
on the robust structural synthesis, namely, ∞H synthesis, was carried. Combination 
of navigation information redundancy and robust controller provides improvement 
of a system’s functioning in difficult conditions of UAV real operation. 
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