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Implementation of the method of boundary integral equations 
 in boundary value problems of gasdynamics 

Results of generalizations of the original vector and tensor analysis and its 
applications in terms of the method of boundary integral equations and its 
numerical implementation for solving nonlinear boundary value problems of 
hydro- and geodynamics are presented. Fundamental advantage of this 
method is that the presented integral equalizations, by virtue of the know 
scope terms, are linear, unlike the differential forms of models. 

The most reliable and proven mathematical model of a viscous fluid is the 
initial-boundary value problem in the form of a system of differential equations in 
partial, first published in the modern form by J.C. Maxwell, G. G. Stokes and C. L. 
Navier. 

Finding solution to the Navier-
Stokes initial-boundary value problem for a 
system of differential equations in partial 
derivatives is an important and challenging 
task in applied mathematics and 
mechanics; and its solution will 
significantly change the way of the hydro- 
and aerodynamic calculations are 
conducted; improve the quality of the 
calculations and increase the reliability of 
the results. 

The boundary integral approach 
has obvious advantages over the finite 
difference and finite element methods. The 
boundary-integral method can be 
successfully applied to solution of complex 
engineering problems – on surface and in space, stationary and time-dependent.  

The stationary problem [1] for the flow of the compressible viscous fluid 
around a body is shown in Fig. 1. The most effective method for solving a wide 
spectrum of boundary value problems of continuum mechanics is the method of 
boundary integral equations [2]. In the absence of internal moments and temperature 
effects, a mathematical model of the dynamics of an incompressible fluid flow is 
described using a well-known system of conservation laws:  

– mass    ( , ) 0ρ∇ =V ,     (1)  
– momentum   ( , ) 0∇ =Р ,    (2) 
– energy    ( , ) 0∇ =E ,     (3) 

Figure 1. Fixed wing ( )S  in a 
steady flow of a viscous 

compressible fluid inside the 
control volume ( )Σ  
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where tensor ( ) [ ]*2 , 2 , ,
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Р VV Й V V ЙЩ  vector of  

energy ( ) ( )p ,E= + +E V Ф V ,V is vector of velocity of fluid flow; *∇ V  is the 

dual tensor ∇V , ρ is density of the medium, p is pressure, ν is kinematical viscosity 
and I is an identity tensor. Solution of the system of differential equations of the 
conservation laws (1 - 3) is subject to the natural boundary condition 

( ) ( ), 0; , , , , 0, 0nS Ss s p pτ τ ρ ρ∞ ∞Σ ∞ Σ Σ Σ= = = = = =V V U Щ Щ ,  (4) 

where SV  is the velocity of points on the liquid surface of the body and is a 

boundary condition that may depend on the surface coordinates ( )ξ η,  in some 
particular cases. 

Integrating in space (Σ) a combination of differential operators (1 - 3) and 
taking the standard limit, and also taking into account the properties of the double-
layer potential [3], the fundamental solution of Laplace's equation in R3, we have an 
integral representation solutions  
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where the tensor [ ] ( ),ϕ ϕ= −Г I I,G x - y , is the fundamental solution of 

Laplace's equation in R3, and the vector ( )2C E∈G  defined by the conservative 
condition 

( ) [ ], 0 ,ϕ∇ = ⇔∇ = ∇Г G    (8) 

is the fundamental solution of the differential operators in ( ), 0∇ ∇ =a , i.e.  

( ) ( ), δ∇ ∇ =Г I x - y ,   (7) 

where ( )δ x - y  is the Dirac delta function, which depends on two points in space, 

and the vectors and tensors takes place of any of the kinematic characteristics of the 
problem. 

Some results of numerical decision of task of flowing around of wing of 
eventual scope of type are below presented by the “winglet” stream of viscid gas by 
the developed method of border integral equalizations and their comparing to the 
authorial experiment [5]. Numerical solution of linear systems of boundary integral 
equations type (5 – 7) for the kinematics and dynamic properties can be obtained 
using the classical quadrature integration over each element of the triangulated 
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surface [3]. As a result of numerical experiments obtained both distributed and total 
hydrodynamic characteristics. These results [4] are illustrated the wide range of 
capabilities of the developed method in terms of computing distributed and total 
hydrogasdynamic characteristics of flow around bodies of arbitrary spatial 
configuration subjected to the flow and external forces. 
 

 
Figure 2. The total aerodynamic characteristics of the wing with 
endings of the “winglet” type calculated with the experimental 

number Re=3◦104. 

Conclusion 

The results of the numerical implementation of the method of boundary 
integral equations on the basis of common concepts of integrated solutions (5 – 7) in 
order to determine the distribution and total kinematic and dynamic aerodynamic 
characteristics of planar and spatial elements of bearing systems of aircraft widely 
used. Fundamental advantage of this method is that the presented integral 
equalizations, by virtue of known scope terms, are linear  unlike the differential 
forms of models. 
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