
UDC 004.4:004.738.5(045)

O.Marchenko,
(National Aviation University, Ukraine)

B.Melnik
(National Aviation University, Ukraine)

Transfer methods of mobile applications from iOS to Android platform

Porting, portability and porting problem
Porting – in programming is an adaptation of some program or it part in

order to make it work in other environment (platform), different from the
environment under which it was originally written. This adaptation aims to save
maximum of original programs custom properties.

This is the main difference between the concepts of “port” and “fork” – in
the first case, all the custom features in the application are trying to save, while the
second – is based on a common basis of independent development of new useful
properties.

Porting process is also called “migrating” process, and the result of this
process – “port”. But in any case, the main task of porting is to keep functionality,
user interface and usual methods of working with the package and its properties.
Adding new or removal of part of existing properties when porting software
products is not allowed.

Portability usually refers to one of two things:
• Portability – as an opportunity to once compiled code, and then run it

on multiple platforms without any changes.
• Portability – as a software feature that describes how easily the

software can be ported. With the development of operating systems,
programming languages and techniques, it is becoming easier to port
software between different platforms. For example, one of the original
goals of the C language and the standard library of the language -– has
the ability to easily porting programs between incompatible hardware
platforms. Additional advantages in terms of portability can have
programs that meet specific standards and writing rules.

The need for implementation of porting usually arises due to differences in
system command processor, the differences between the ways of interaction of the
operating system and programs (API), the fundamental differences in the
architecture of computer systems, or because of some incompatibilities, or even the
complete absence of the programming language in the target environment.

Porting problem arises when there are two (or more) dominant platforms on
the market, which takes most of market share (for example, like iOS an Android on
mobile operating systems market), and when the customer has a desire to move his
existing project from one to another platform, in order to increase the audience of his
product. Best practice consists in using the parts of porting technique already on the
early stages of application development.

4.2.4

Pictu

Pictu
(Go

to An
portin

transp
new c
some
have
writin
enviro

and U

ure 1 – iOS and Andr

ure 2 – Google Play M
oogle Play offers 1.5 m

Pictures 1 and 2 co

ndroid as well as in dir
ng application in direc

Cross-platform co
Source code can b

porting cost from one
code from scratch. Th

kind of algorithm, I
to write the same alg

ng code again. To
onment.

Main methods of w
Unification":

• First of all, a
common type

oid Market share diag
(Actually for 201

Market and Apple App
million apps, and the
apps) (Actually for 2

onfirms existing of po
rection from Android
ction from iOS to And
ode and main metho
be considered as cro
e system to another i
hat is, we cannot call
I want to do the sam
gorithm for this platf
port the algorithm,

writing cross-platform

a hard typification –
s, since different platf

gram (Android – 78%
6 year)

p Store applications nu
Apple App store offe

2016 year)

orting problem, in dire
d to iOS. (According t
droid is more widespr

ods of writing cross-p
oss-platform, in case
is much less than the
l "porting" situation l

me algorithm on iOS
form. This is not the

it should meet the

m code can be defined

it is important to w
forms built native-typ

%, iOS – 18,3%)

umber diagram.
ers 1.4 million

ection from iOS
to statistics,
read.)
platform code
when this code

e cost of writing
ike this: "I have
- accordingly, I
porting – this is

e cross-platform

d as "Separation

write code in its
pes can vary.

4.2.5

• Separation of code on algorithmic and non-algorithmic part. From
algorithms pulls out the system calls and basic operations.

• Hardware-dependent part: we separate a program on the algorithmic
part(math), and on the part that depends on the system.

Hard typification – is just defining of your own types for much better
control, this is very helpful when you work, for example, with network, you can be
sure that all of yours packages are int16, the distance between them is 0, there is
concrete offset and there is no other way. After all, if you define all through a char,
which suddenly becomes a double-byte, all go somewhere not there. Just to simplify
the reading and writing code dependent on the platform / compiler / version of the
language is very useful to introduce their own unified defines.

Hard typification sample (on C language – stdint):
#if defined(_MSC_VER)
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef signed __int64 int64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned __int64 uint64_t;
#elif defined(LINUX_ARM)
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef signed long long int64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long uint64_t;
#else
#include <stdint.h>
#endif

Algorithms and algorithmic part. For simplicity of porting, it's desirable

that algorithm does not use any system functions, and even better we need to
manage without any system libraries.

System calls. One of the basic principles of writing portable and managed
code - do not use “malloc” (memory allocation) inside algorithms. Your algorithm
should determine how much memory it required, and pass this value to your before
written memory manager, which already allocates memory and provides a link to a
dedicated part of initialization. The algorithm uses this part. This is right approach.

Basic operations. Under the basic operations involves the selection of non-
specific operations that are not in C, but these operations are using very frequently.
Example of basic operation can be CLZ (Count Leading Zeros) operation. To
demonstrate the expediency of using basic operations, I’ll shoe simple example: a

4.2.6

shift operation for int64. In principle, this command is in C, but may be
implemented in various ways, since it is not standard int, this is int64. Int64 in
different systems can have different names, but it's not so bad. The biggest problem
is that this operation can be performed in different ways.

Hardware-dependent parts of mobile applications offer the following
features:

• They heavily dependent on the API, frameworks, be it Android or iOS
(or something else).

• They often use non-native tools. For example, code that uses video in
Android can be such an algorithm: engine written in C, it calls the Java
through JNI, which is then in turn pays back through JNI result.

• They use less portable languages. Less portable language I refer, for
example, Objective-C and Java. Despite the fact that Java is considered
to be cross-platform language, compared to C language with the
universality it is clearly lacking.

Basic wrappers. In order to somehow unify the work with the hardware-
dependent parts of the code, a good practice is to allocate a set of basic wrappers.
There is my list of basic wrappers:

• System log: iOS – NSLog; Android – Logcat.
• Memory manager – must to perform malloc/free operation; As an

option memory manager can perform seek of memory leaks operation.
• Mutexes\atomic operations – also different for different platforms.
• Thread manager – superstructure on mutexes and basic API for creating

multithreaded applications.
• System information – can be useful if you change something in the

runtime. If your code is optimized for multiple processes, you can learn
in the runtime, what kind of system, and connect the chosen one part.

• Tracing\logging – it is not just the system log; This is debugging errors,
and good if it is the same for all platforms.

• File managing – includes input\output files, .psm dumps and so on.
Very handy to have a output from a single interface.

• Profiling Tools. If you have a heavy code, not always with help of
standard tools you can quickly figure out what and where lost.

Additional wrappers. Depending on what makes the device, you may need
additional wrappers. Here is a brief list of hardware parts that make mandatory of
wrappers using (they need to porting process went smoothly):

• Sockets\network
• Audio devices
• Video devices
• Input devices
• Output devices
Most important things, that need to be considered when cross-platform

application is creating
• Memory of data\code
• Data align

4.2.7

• Optimization for concrete processors
• Floating point
• Integer division
• Multithread an Main Thread.

Conclusions

Porting of software – important process in modern software engineering at
all and at different markets, for example, like mobile operating systems market
(most actually for iOS and Android).

Following all of the above recommendations, we can obtain an algorithm
that is written through the hard types that you transfer. This algorithm does not
require any intervention at all. Theoretically, it should compile and work
immediately. Better to have unit tests to this algorithm. If the algorithm is compiled
and passed inspection, most likely, all will be well. The basic operation is also can
be ported, but they also may not be.

Hardware parts require porting. The best practice is when hardware parts
have most closely to system interface. They will be easier to check, and they quickly
ported.

Understanding of processor architecture improves portability.
The key to successful porting - this is a good cross-platform code.
Simplicity of portability defines forethought of architecture. So if you are

writing a new application, conceived it cross-platform originally. Even if you do not
plan to maintain it, perhaps it would have to be proceed by someone else.

References

1. Mooney (1997) – "Bringing Portability to the Software Process". West
Virginia University. Dept. of Statistics and Computer Science. Retrieved 2008-
03-17.

2. Garen (2007) – "Software Portability: Weighing Options, Making Choices".
The CPA Journal. 77 (11): 3.

3. Lehey (1995) – "Porting UNIX Software: From Download to Debug".
Retrieved 2010-05-27.

4. Sean Liao (2014) – “Migrating to Android to iOS Developers”. Apress.
5. Sean Liao, Mark Punak, Anthony Nemec (2014) – “Migrating to Swift from

Web Development”. Apress.
6. https://mobiforge.com/research-analysis/mobile-software-statistics-2015
7. http://www.mobilephonedevelopment.com/porting-ios-to-android
8. https://www.netmarketshare.com/operating-system-market-

share.aspx?qprid=8&qpcustomd=1
9. https://www.netmarketshare.com/operating-system-market-

share.aspx?qprid=9&qpcustomb=1

4.2.8

