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Electrical and Quantal Analysis of Photonic Crystals 

The novel coupled potential equations and the Schrodinger equation were employed 
to analyze the light scattering, quantum quality of crystal structures. Compared with 
other related researches, quantum effects were directly involved in this paper. The 
finite-difference time-domain (FDTD) was applied to discretize the coupled equations.  

INTRODUCTION 
Recent technology developments in quantum regions have opened a way to 

control quantum states of electrons, atoms, molecules, and nano-scale objects[1]. 
These studies have attracted great attention over the past 20 years since they seem to 
have the ability to control photochemical reactions with high efficiency. But this 
pioneering technology needs to design external laser pulses to the target systems, 
which are not that simple to figure out through the basic quantum theories[2]. Hence, 
optical control of states through computational algorithm has been a growing interest 
in recent years. These have prompted demand for new analysis technique for electrical 
structures in nano-scale where quantum effects have to be considered so as to cut down 
time and cost of researches. 

Since the Maxwell’s and Schrodinger’s equations are both time- and spatial-
domain differential, finite difference time domain (FDTD) method and its variants 
have been proved to be the most efficient, concise and employed[3, 4]. However, some 
of these seem to rely on the assumption that the electromagnetic fields near the atoms 
would not be disturbed by atoms excitation or the disturbance can be negligibly tiny to 
be ignored [5].  

NUMERICAL MODEL 
Computational electromagnetics is aimed at solving Maxwell’s equations 

numerically. A variety of techniques like FDTD and finite element method (FEM) 
have been developed over the last few decades to solve scattering problems, antenna 
designs, wave propagation and so on[6, 7]. With Maxwell’s equations being still valid 
in both macro- and nano- scale, coupling it with Schrodinger’s equation is the most 
straightforward and strict way to solve multi-physics studies. 

The quantization of the electromagnetic field can be done more expediently 
with the vector and scalar potential rather than with electronic and magnetic fields. The 
vector and scalar potential formulation are quite convenient to both quantum theory 
and classical electromagnetic simulations. The rapid development in quantum optics 
applications calls for new numerical solutions which can bridge the multi-scale 
systems. Furthermore, the equations neither exhibit the low-frequency catastrophe nor 
the frequency imbalance observed in the traditional formulation using E-H fields, in 
our earlier study[8]. 

The coupled equations of our frame can be writes as 
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The coupled discretized equations should be justified for the anisotropic 
medium, compared with our early work. If Maxwell equations are still involved in the 
system, the extra steps will be energy-cost and slow to solve electromagnetic fields 
into pre-requisite potentials. And the cost will be more than doubled in anisotropic 
medium with sensor drawn into. The dielectric sensor of many crystals can be 
symmetrical, as shown in (3). 
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(3) is substituted in to (2), and the discretized vector updated equation is given 
as follows, 
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where  , ,v x y z=  means the v-component of the term, [ ]3 1 1 1 TI =  flattens the 
tensor to vector scale.  

For the sake of brevity, only the most difficult term is minutely discussed, i.e. 
2 1 1 2

3[ ]t I Aε ε μ ε ε− − −Δ ∇ ∇ ⋅  , as follows. 
To start with, we suggest dealing with div part, 

 

1

1 1 1 1, , , , , , , ,
2 2 2 2

1 1 1 1, , , , , , , ,
2 2 2 2

1 1 1, , , , , , ,
2 2 2

x x x x

y y y y

z z z z

f A

i j k A i j k i j k A i j k

x

i j k A i j k i j k A i j k

y

i j k A i j k i j k A i

ε

ε ε

ε ε

ε ε

= ∇ ⋅ =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Δ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠+

Δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠+

1,
2

j k

z

⎛ ⎞−⎜ ⎟
⎝ ⎠

Δ

  (5) 

The gradient term can be discretized as, 

 

2

2 1
2 2

2

0 0

0 0

0 0

x

y

z

f

ff f

f

ε μ

ε μ
ε μ

ε μ

− −

⎡ ⎤
∇⎢ ⎥
⎢ ⎥
⎢ ⎥

= ∇ = ∇⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∇
⎢ ⎥⎣ ⎦

  (6) 

For the above term, only the first component is shown because the components 
in the other two rows are analogous. 
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With the help of (5), (6) and (7), the complicated term can be discretized 
eventually, 
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When the length scales of simulations are shrunk to nano-scales, the sizes of 
the objects may be much smaller compared to wavelengths of incident waves[9]. 
The solution in this paper is to employ magnetic vector potential and electric scalar 
potential rather than electromagnetic fields when dealing with sensor calculation and 
anisotropic medium. And the coupled equations are of great benefits to reducing 
computational cost and simulation time. 
 COUPLED SCHRODINGER SYSTEM 
 The length gauge can transform the Schrodinger equation into one with the 
fields directly involved. However, the gauge will be inaccurate when the wavelength 
of the source becomes shorter or almost near the size of structures[10, 11]. 
 In the presence of electromagnetic fields, the time-dependent Schrodinger 
equation for a particle can be modified by including vector and scalar potentials 
terms, respectively, as follows[1]: 
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where ℏ denotes Planck’s constant, Ψ represents the wave function, m is the 
effective mass of the particle, q represents the charge of the particle, V is the 
confinement potential.  
 RESULTS AND DISCUSSIONS 
 Through model-solid theory and effective mass approximation, the energy 
band of the numerical PhCs can be obtained.  Strain contributions are taken into 
account. 
 The strained InGaAs conduction band edge _ _c InGaAs sE  can be given by 
the following equation, 

 _ _ _c InGaAs s c InGaAs g cE E E P= + +   (10) 
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with  _c InGaAsE  ,  gE  and  cP  as the unstrained energy of InGaAs, the energy gap 
and the strained-induced energy shifts. 
 A schematic of the simple crystals model is shown in Fig .1. 

 
Fig .1 The simulation domain 

The thickness of the substrate of GaAs is 4.5nm, thinner than usual 
experiment. This is because the wavefunctions of the priticles are zero in these 
layers. By reducing the thickness of unneeded, the cost of simulation is cut down. 
The time step of the simulation is 0.1fs, the spatial is 0.05nm.  The PML will absorb 
any radiation that reashes the edges of the simulation domain, and about 20 units 
thickness PML can effectively eliminate any reflection at the boundaries that 
interferes with the simulation. The filling factor and depth of PhCs are 0.035 and 
1nm, respectively. 

 
Fig .2 vector potential v.s. conventional electric filed 

 As illustrated in the results, our method can get right simulation results as 
same as the conventional FDTD method. And the time cost is 40 percent smaller 
than Maxwell system. 
 CONCLUSIONS 
 A novel algorithm is proposed to simulate the electrical and quantal 
characteristics of PhCs in this paper. 
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