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Alternative quasiconformal mapping of one class of GAP functions

The specificity of the application of conformal mappings in tomographic methods and
algorithms based on the Radon transform is analysed. It is proposed to use discrete
Fourier transform algorithms to restore images and determine the coordinates of point
sources of radiation as a tool for quasi-conformal mapping of functions subjected to the
Radon transform. Thanks to the parametric assignment of functions, a simplified
method for calculating derivatives in the expansion in a Taylor series has been
developed. The method makes it possible to find the derivative of a function given
parametrically, without finding an expression for the direct dependence of the function
on the argument. Due to the parametric assignment of functions used in tomography
problems, it becomes possible to modify the quasi-conformal mapping. When expanding
in a Taylor series, both linear and quadratic terms are taken into account. Numerical
calculations show that for a limited scanning sector, the errors of the proposed method
are smaller than in the case of a classical quasi-conformal mapping.

Introduction.

In the theory of functions of a complex variable, continuous functions are
most often considered as analytic continuations of functions of a real variable [1,2].
Specifying a complex function w( z) of a complex variable z=x+ jy is
equivalent to specifying two real functions of two real variables:
w(z)=u(x,y)+ jv(x,y):

While introducing the concept of differentiability of a function of a complex
variable, by analogy with the corresponding concept of the theory of functions of a
real variable, differences of a fundamental nature arise. In particular, the
requirement that a function of a complex variable be differentiable on the set of its
values imposes the Cauchy-Riemann condition.

It should be noted here that we use the classical definition of an analytic
function, which differs from the applied one usually accepted in the literature by the
requirement of continuity of partial derivatives. This implies the sufficiency of the
condition for the existence of the first differential, i.e., differentiability of any
function of several variables.

Leaving aside the singularities of discontinuous functions for the time being,
let us turn to the problem of mapping some € -neighbourhood of a point z, —the

argument of the function W( Z) — onto a U-neighbourhood of the point

w, = W( Zo) . The mapping is carried out by an analytical function w( z) with the

conservation of angles and the constancy of distances. Such a mapping is conformal.
For any conformal mapping, there is some orthogonal grid of curves that transforms
into a rectangular Cartesian grid. A typical example of an orthogonal grid of curves
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is a polar grid. In this case, infinitesimal figures (for example, triangles) with a
vertex at a point Z,, are transformed into infinitesimal triangles similar to them with
a vertex at a point W,

The transformation of plane performed by the analytic function has the
following important properties in the g-neighbourhood of the point Zy for which

the derivative is W'( Zo) # (. The vectors of all directions outgoing from this point:

- change (increase or decrease) in length by the same number of times, equal
to the modulus W' ;

- rotate through the same angle equal to the argument w'.

Thus, any figures in an infinitely small area (triangles, rectangles, ellipses,
etc.) are transformed into similar ones, i.e. keep their shape. Therefore, such a
transformation is called a conformal mapping [3 — 5]. Figures of finite dimensions
are distorted, although the angles between the tangents to two curves are preserved
(so-called conservatism of angles). In general, the properties of conformal mappings
of continuous functions have been studied very well. Conformal mappings are used
in electrical and radio engineering, aero- and hydrodynamics, and in other
engineering applications.

Unfortunately, we can't say the same about conformal mappings of
discontinuous functions. For example, the applied aspects of conformal mappings of
such a class of discontinuous functions as discrete signals have not yet been studied
enough. These include display errors, computational complexity, etc.

This thesis attempts to fill this gap regard of the problems of tomographic
detection and measurement of the coordinates of point sources of acoustic noise
radiation [6].

With the reconstructing the tomographic images of large 3D objects from
projections and multisite detection/measurement of coordinates of point (small-
sized) objects it is sufficient to obtain sets of layered images with the possibility of
determining the coordinates of point sources. The problem is to calculate the discrete
Radon transform, which is performed on a function with a finite or countable
number of discontinuities. Typical examples are functions on Cartesian or polar
discrete coordinate grids

a) Cartesian grid: x =0,Ax,2Ax,...,NAx; y,=0,Ay,2Ay,...,NAy. Ax=Ay, N<o,

b) Polar grid: ¢, =0,Aq,2A¢,..., NAg; p, =0,Ap,2Ap,...,NAp. N <o,

According to the central section theorem [5], there is a one-to-one
correspondence between the Fourier transform and the Radon transform, which, in
essence, is the problem of restoring the original function from its integrals along the
rays of the polar grid. The properties of the Radon transform and the formulas for its
inversion are considered for individual layers, i.e. for the two-dimensional case. Fig.
1 shows layers of three-dimensional functions on coordinate grids.
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a) 3D Cartesian grid b) 3D spherical grid
Fig. 1. Examples of 3D functions with a finite number of discontinuities

Thus, the research problem is formulated as follows:

- to develop a variant of a quasi-conformal mapping of a discontinuous
(piecewise-continuous) function;

- to conduct a comparative analysis of the accuracy of various methods for
constructing quasi-conformal mappings.

The construction of alternative quasi-conformal mapping.

Let's consider the simplest piecewise-continuous function, which is a
collection of points on a circle. This function is typical for the most tomographic
problems. Moreover, it's very important problem from the point of view of accuracy
of tomographic imaging and detection/measurement.

The points are located at equal angular distances from each other. Fig. 2
shows the sectors of the circle.

External
angle

Fig. 2. Part of a circle divided into sectors with the same central angles

Obviously, the smaller the central angle of the sectors, the smaller the
conformal mapping errors. Fig. 3 shows graphs of the dependence of internal and
external angles, which are of interest for the analysis of conformal mapping errors,
the number of partitions of the circle into sectors.
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Fig. 3. Graphs of the dependence of internal and external angles
on the number of partitions of the circle
Consider the equation of a circle with a radius D centered at a point
{ X, yo} . We write the equation in parametric form:
{xzx0+pcosq); 1)

Y=Yy, +psino,
where @ is the angle formed by the rotating radius O with the positive axis

Ox direction.
The function f (p’q)) has continuous partial derivatives of all orders in the

vicinity of the point { Xy, yo} and satisfies the Cauchy-Riemann conditions. Let us

write in general terms the expression of the Taylor series for a function of two

variables { X0) } :

f(p.9) =f(po,<po)+11{6‘/[(2;’(%)(p—po)+af(g((’;%)(w—%)}+

L7 P00) (o2 @S Po®) 3y ESPo) (e
+2![ P (P=py) +2 oooe P Po)(0—9,)+ o (0-0,) | +...

As applied to the problem under consideration, the circle equation takes the

following form:
X, +PpCosQ;;
f((pl p:const) = { 1
Y, tPsSing,,

Thus, assuming a constant parameter, we pass to a function of one (discrete)

0, =0,Ap,2Aq,...,.nAQ" )

variable @, We consider the function f ((P| ) to be discontinuous with the
1 1

p=const
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discretisation interval ¢, — @, = AQ-

Taking into account the previously introduced assumptions about the
properties of the transformation of the complex plane x(y into another complex

plane ¥Ov, we expand the functions (2) in a Taylor series with retention of two
terms. We call it alternative quasi-conformal mapping.

In order to avoid sophisticated and bulky transformations, we use the
parametric definition of function (2). The series will look like this:

d L0 (o LS (00) 3)

2.
p:const):f((po) 1' d(P 2| d(P2 (A(\D_(\DO)

f ((P[

Now you need to calculate the first and second derivatives of the function.

When defining a function parametrically, you can use universal formulas [7]
!

¥(x)=2e )
¢
a6
o 00, ) vix -y 6)
xx ’ ’ 3
X, X, (X:p)

However, there is an easier way. In order to find the second derivative

V(%) of a given function { X=cosQ; y= sin(p}s we first find its first derivative

y'(x):

’

, (sin(p) cos . 6)
V= t=———=—ctgo
(coscp)q) —sin@
The second derivative o is formally the first derivative of ' (x),

therefore, it can be taken by a formula similar to (4):

’ ’ 1
” :(y;)t :(_Ctgt)t — sinzt — 1 - (7)
e x! (cost) —sint  sin’t
t

Specifying in expression (3) the functions of the first and second derivatives
(6, 7), we obtain the final expression for the Taylor series with retention of terms up
to quadratic inclusive:

(Ao-p,) @

1(0] ) = 7 (@) —cteox(20—g,) -

2sin’ @
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Calculation of errors of quasi-conformal mapping.

Using expressions (3 — 8), the normalized errors of the quasi-conformal
mapping were calculated. Fig. 4 shows graphs of the exact values of the circle
equation (2) and approximation by a Taylor series with retention only linear term of
expansion. Fig. 5 shows plots of normalized errors of the quasi-conformal mapping
during approximation by a Taylor series with retention of only the linear expansion
term and with retention of the expansion terms up to including the quadratic one.
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Fig. 4. Graphs of the exact values of the equation and approximation
of the Taylor series with a linear expansion term
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Fig. 5. Plots of normalized errors of a quasi-conformal mapping
with one and two expansion terms

The errors of the quasi-conformal mapping depend on the value of the
central angle of the sector (and, accordingly, on the number of sectors of the
partition of the circle). For example, for a sector with a central angle of 90° (a
quadrant), the approximation error will tend to infinity. However, with a reasonable
choice of the angular size of the sector, the errors of the quasi-conformal mapping
with approximation by the Taylor series with the retention of the terms of the
expansion up to the quadratic inclusive will always be smaller. Finally, the using
modified quasi-conformal mapping gives us substantial improvement of accuracy.
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Conclusion

This study is devoted to the problem of conformal mapping of discontinuous
(piecewise-continuous) functions when calculating the inverse Radon transform by
successively applying the discrete Fourier transform. For any conformal mapping,
there is some orthogonal grid of curves that transforms into a rectangular Cartesian
grid. A typical example of an orthogonal grid of curves is a polar grid.

The difficulties that arise when replacing the Radon transform with the
Fourier transform can be successfully overcome by applying a quasi-conformal
mapping. With fan-shaped scanning, we work in a limited angular range of
directions of sighting of a point source of radiation. Then it turns out to be possible
to use quasi-conformal mappings and approximation by a Taylor series with
retention of terms of the series up to and including the quadratic one.

By applying the parametric assignment of functions that describe the
equations of the circular sector, it is possible to significantly simplify the calculation
of the derivatives that make up the Taylor series. The comparative analysis of
conformal mapping errors and, consequently, the accuracy of calculation results
using Fourier transform algorithms is simplified.
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