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Computer modelling of laminated metal-polymer composites and long-term 
strength prediction  

A nonlinear creep problem of the composite laminate is solved within the framework 
of a second-order nonlinear theory. The hereditary functionals are used to construct 
the general constitutive equations. Schapery's correspondence principle is applied to 
solve creep problem. The multiscale analysis is done using micromechanical and FEA 
modeling. 

Introduction 
Laminated composites with an aluminum and polymer constituents are 

essential engineering materials. Such materials are widely used in aviation and space 
technology [1, 2], When modeling the long-term response of composites with a 
polymer matrix, it is necessary to consider the effects of creep, which develops even 
at low enough temperatures. For this purpose, we use the following characteristics to 
describe the deformation and strength of composites: the creep strain, the rate of 
creep strain, the relaxation time, the ratio of creep limits, and durability. 

One of the urgent problems of the mechanics of hereditary creep of com 
posite materials is to predict the averaged creep properties of the composite based on 
the properties of its components, their volume content, and reinforcement methods. 
Many theoretical and experimental papers are devoted to studying various aspects of 
the creep process of isotropic composite materials. An overview of the obtained 
results is presented in [3, 4]. The vast majority of the performed studies refer to the 
linear region of long-term viscoelastic deformation. All solutions are built based on 
the Boltzmann - Volterra linear theory of viscoelasticity [4]. It is a well-known fact 
that for most metal composites, the linearity range is relatively small, and 
satisfactory results can be obtained at low stress and only for short loading duration 
[2]. Nonlinear equations of viscoelasticity are given in [5]. However, the 
representation by infinite series of multiple integrals makes it impossible to identify 
integral kernels and determine their parameters in typical experiments. An approach 
based on the similarity of isochronous creep diagrams is more promising for 
building nonlinear models of hereditary creep [6]. This new algorithm is further 
developed due to the expansion of the initial condition of similarity, which includes 
the diagram of instantaneous deformation as an isochrone for the zero moment. The 
extension of the similarity condition made it possible to build a nonlinear creep 
model with a time-invariant nature of the nonlinearity, which is determined by the 
instantaneous deformation diagram. Within the framework of the model, the 
problem of determining nonlinear creep deformations of polymer with reinforcing 
fibers was solved [5]. Nonlinear creep deformations of fibrous unidirectional 
composites during stretching along the direction of reinforcement are determined. In 
[4], Volterra's theory of hereditary elasticity is used to solve the FEA problems of 
creep mechanics. The theory describes inverse processes and assumes a linear 
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relationship between stresses and strains. Therefore, it sometimes cannot be used to 
describe the creep of metals, even in the first approximation [2].  

 
State of the Problem 
Deformation in hereditary materials is determined by the stress history 

( ), ( [0, ])u u t∈σ , as well as the initial conditions (0) =σ 0 . For a linear medium, 
after integration in, it is possible to write down in the general tensor form [5] 

 
0

( , ) ( ) ( , ) ,
t

dt t u u du
du

= −∫e x J σ x   (1) 

where ( ) ( ) ( )et g t=J J σ  is the nonlinear creep tensor function (retardation). In a 
short symbolic form [1, 6], we have 

 ( , ) ( * )( , ) ( * )( , ),dt t t
dt

= = e x J σ x σ J x   (2) 

where the asterisk denotes the integral convolution operation. Thus, the expression  
( * )( ) ( * )( )t d t=σ J σ J  is a Stieltjes convolution [3]. If ( )f t  is some continuous 
function on the interval 0 t < ∞„  and  it behaves as an exponent when t →∞ , then 
the Laplace--Carson (LC) transformation of the function reads [2] 

 
0

{ ( )} ( ) ( ) .stLC f t f s s f t e dt
∞

−= = ∫   (3) 

Applying the LC transformation to (1) and (2), we find 
 ( ) ( )( ) ( )( ) .e s s g s= =σ Ce σ   (4) 
Here it is assumed that the instantaneous elastic response of the material is 
physically linear. That is, there is an LC transformation ( )sC  from the relaxation 
function ( )tC . We also apply the law of instantaneous deformation of the second 
order of deformations [2, 5] 
 ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ),s s s s s s h s s= − = −σ C e β β C e   
where ( )β e  is hardening stress [2] (it is the nonlinear function of infinitesimal strain 
tensor ( )te  or ( )se  in LC domain), ( )h t  is the reduced relaxation function [6]. 
In the linear theory of viscoelasticity, the solution to problems can be obtained using 
the correspondence principle [1, 3]. It is natural to generalize this principle to 
problems of hereditary creep. Here we use quasilinear variant of the hereditary creep 
equations, where the concept of so-called modified stresses ( ) / ( )e t W t= ∂ ∂σ e   and 

modified (restored elastic) strains ( ) / ( )e t U t= ∂ ∂e σ  is used. The function ( )W e  is 
elastic energy, the function ( )U σ  is complementary elastic energy. Following the 
accepted hypothesis, we assume that the material exhibits an instantaneous elastic 
reaction and denote by ( , )e te x , ( , ), ( , )e et tσ x u x  instantaneous elastic deformation, 
stress, and displacement, respectively. A material with elastic properties is defined 
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as a medium whose behavior corresponds to the first and second laws of 
thermodynamics. From this follows the existence of the stored energy function 

( )W e  and additional energy ( )U σ , which make it possible to find instantaneous 
deformation (during creep) or instantaneous stress (relaxation process) 

 
( , , ); ( ) ( , , ),

( , , ); ( ) ( , , ).

e

e

UU U t t t

WW W t t t

∂
= =

∂
∂

= =
∂

σ x e σ x
σ

e x σ e x
e

  (5) 

If a hereditary body is initially undisturbed, mass forces b  and tractions t  are 
given, then the solution of the nonlinear problem of hereditary creep (equations, 
and) is as follows 
 ( ) ( ), ( ) ( * )( ), ( ) ( * )( ),e e et t t g d t t g d t= = =σ σ e e u u   (6) 

where the Stieltjes convolution is defined by \eqref{ma3}. The field variables ( )eσ x  

, ( ), ( )e ee x u x  satisfy the equation of the corresponding problem of the nonlinear 

theory of elasticity together with the same boundary conditions [1, 3]. Thus, ( )eu x  
satisfies the equations of the corresponding nonlinear elastic problem together with 
the same mass forces ( ) ( )e =b x b x   in the body and the boundary conditions 

( ) ( )e =t x P x . 
 

A local problem of the mechanics of hereditary creep  
Aluminum alloys of several classes are used to produce polymer-aluminum-

silicon oxide composites. As an object for modeling, we refer to the mechanical 
properties of an aluminum-based alloy of the Al 2024 S type. Therefore, an 
anisotropic composite laminate modeled by a heterogeneous medium occupying a 
volume V composed of homogeneous phases ( ) , ( [0, ])rV r N∈  with a 

characteristic volume function ( ) ( )rχ x . In addition, inequality ( )rV V holds, and 
the interphase contact is assumed to be ideal. The creep function of r th phase is 
denoted by ( ) ( )r tJ . Then the creep function of the composite can be represented as 
piecewise homogeneous: 

 ( ) ( )

1

( , ) ( ) ( ).
N

r r

r

t χ
=

=∑J x t J x   (7) 

Here  and ( ) ( )( ) 0,r rVχ = ∉x x  in another case. Volumetric averaging over V  and 
( )rV is denoted hereafter by ⋅  and ( )r⋅ , respectively. Volumetric averaging of 

the characteristic function by r  -phase gives the volume concentration value 
( )r

rc χ= . Volumetric averaging of any function f  over the representative 

volume V  and over the r -phase, Stochastic equilibrium equations and boundary 
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conditions of the first linear approximation written in the domain of the LC 
transformations (3) can be represented in the form [5] 

 
( ) ( )

( ) ( ) ( ) ( ) ( )

(1)

(1)

(1) (1)

( ) , , ,

( , ) ( , ) ( , ),

, , , , , , .

s s

s s s

s s s s s

∇ = −∇

= −

= = −

L v x τ x

v x u x u x

τ x f x e x f x C x L

  (8) 

The dash bar above indicates the results of statistical averaging in a sample with a 
random elasticity tensor ( , )sC x , L  is the elastic modulus tensor of a homogeneous 
body of comparison [6]. 

 
Second order nonlinear solution.  
Following the proposed algorithm, we find the second order nonlinear 

solution, where field variables are expressed in terms of macroscopic deformations of 
the representative volume of the composite material 
 ( ) ( )

(1) , [1, 1], 1 .r r r n n m= ∈ + + =e A e   (9) 

Superscripts in parentheses mean the result of the conditional statistical averaging 
operation. The first approximation of deformations is ( )

(1)
re . By implementing the 

procedure defined by (), we obtain 
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 In the calculations with FEA [3, 4] it is assumed the all three phases are nonlinear 
elastic, an aluminum and epoxy are materials with hereditary creep properties. 
Several displacement and energy based failure criteria models are used, as well as  
an influence of interface stress concentration [5].  

 
(a)    (b) 

Fig1. Results of FEA analysis of delamination in composite: 
(a) Surface von Mises stress in lamina, (b) load – displacement curve. 
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As an example, consider a composite laminate, based on ED-6 resin, reinforced with 
alumina Al2024S and  SiC fibers. Nonlinear elastic properties of constituents are 
presented in Table 1.  

Table 1   
Nonlinear elastic material constants, GPa, for the Al2024/SiC/Epoxy composite. 
Material E , GPa  ν  1ν , GPa 2ν , GPa  3ν , GPa  

Al 2024 S 55.8 0.33 -115.0 -160.5 -108.8 
SiC 440.3 0.171 -227.2 31.5 -170.75 

Epoxy 3.15 0.382 13.3 4.09 -10.02 
 
 

Conclusions:  
The method of successive approximation is used to obtain the full system of the 

hereditary creep equations of the second order. The creep functions of laminate 
composite are found. Also, interface stress concentration parameters are determined. 
The given examples show the importance of the mutual influence of nonlinear elastic 
and creep properties of the composite components on long term fracture parameters. A 
practical result is a possibility of FEA modeling the long-term strength of composite 
multilayered structure. 
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