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Stability of automatic control systems of inertial objects 

Considered the method of calculation and construction of the stability border and the 
region in  the plane of  two parameters. 

Introduction. Performing by the automatic control systems (ACS) functions 
assigned to them is possible only when they are stable. If ACS is stable, all the 
transients caused by external influences will be damped and oscillations in a system 
will not arise. System stability is achieved only when there is a certain combination 
of its parameters, and provided with appropriate adjustments during maintenance. 

Investigation of the influence of parameters on the stability of ACS 
management processes is performed during the system projecting. Solution of 
problem by constructing vectors of hodographs ( )А jω  or ( )opW jω  for each change 
of a parameters is a very laborious work. It would be better to build the stability 
border in a space of variable parameters, which will divide regions of sustainable 
and unsustainable management. Further investigations will be reduced to the 
determination of the position of the operating point according to system parameters, 
which are interesting for the researcher, in one or another region. 

Usually limited by two parameters of variation ( ),А В  for fixed values of 
the others. Stability region can be closed, that in general is not required. The 
equations of stability border  may be defined with the help of the frequency criterias 
of Nyquist  or Mikhailov 
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Solution of the problem. Analysis of automatic control systems of inertial 
control objects shows that different in design systems have congruent structure and 
transfer functions of the same type. This allows us to consider a methodology of 
analyzing their stability based on the generalized block diagram, shown in figure 1. 
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Fig.1 Generalized structural diagram of a typical automatic control system 
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In the block diagram the following notations are used: 
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are the transfer functions of the inertial control object, regulator, sensor of speed 
deflection of control object, sensor of deflection of control object respectively; 
M Σ is the total disturbing moment; sM is the stabilization moment. 

Transform a block diagram to the form shown in figure 2 selecting the 
channels of forming the stabilization moment. In the diagram introduced the 
notations of system stiffness G and damping D . 
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Fig.2 The structural diagram of a system with fission of forming channels 

  of stabilization moment 
 

Stiffness characterizes the ability of the system to counteract to the external 
disturbances. It is determined by the coefficients  of strengthening of the deflection 
sensor  and regulator sd regG k k= . 

 Damping describes the ability of the system to put out vibrations arising in 
it. Damping depends  from the coefficients  of strengthening of the speed deflection 
sensor and regulator ssd regD k k= . 

Stiffness and damping directly influence on the formation of stabilizing 
moment and determines the effectiveness of systems countering to external 
disturbances. Will take stiffness G and damping D  as variable parameters of 
system and find stability border and region in the plane of the selected parameters. 

Let us find the transfer functions:  
- by control signal  
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- by external perturbation 
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Here ( )A s  is the characteristic polynomial of the sixth order 
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Coefficients of the characteristic polynomial are 
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The total damping 0D D DΣ = +  is determined by the sum of constant 
damping 0 0 01D k f= = , caused by natural friction of inertial control object, and of 
external damping D , which is generated by the sensor of speed deflection of control 
object. 

Let us use the Mikhailov criterion for assessing the stability of the 
stabilization system     
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Equating the real and imaginary parts to zero, we shall have 
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where sbG and sbD Σ  are the stiffness and total damping, that corresponds the 

stability border ( )sb sbD F GΣ = . 
On the basis of last equations  will just find dependences of the boundary 

values of  stiffness and total damping from the frequency 
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According to the graph-analytical method [1] is constructed the stability 
border ( )sb sbD F GΣ = of the system (Figure 3). 
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Fig.3 Region of stable management processes 
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Let us select the region of stability management, using the rule of applying 
shading [2]. For this we find the determinant 
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Since the determinant is greater than zero, we put shading on the left side, 
moving in the direction of increasing frequency maxω→ . 

Stability border identified in the plane of variable parameters stability 
region. Inside this region, any selected operating point А , with parameters AG and 

AD  corresponds to stable (damped) management processes. 
Conclusions. The resulting stability border and region allow us to make a 

number of important conclusions: 
- with decreasing the damping stability ACS retained until you reach the 

lower border of the stability region, where the frequency is relatively small. On 
reaching the lower border low frequency oscillations with large amplitudes are 
arising in the system. 

- with increasing the damping stability ACS retained until you reach the 
upper border of the stability region, where the frequency is relatively high. On 
reaching the upper border high frequency oscillations with small amplitudes are 
arising in the system. 

- for a given value of stiffness, for example ,AG  limits of  changing  
damping are strictly limited 1 2AD D D< < . 

- the border of the stability region defines the limit of stiffness maxG , which 
can be obtained for a given system. 

- if the system is missing the sensor of speed deflection of control object it 
will be stable only for a small value of stiffness fG , that  corresponds the damping  
by friction 0f . Thus, the speed sensor expands the stability region of the system. 

- the time constant 0 0 0T J f=  of the control object depends on its moment 

of inertia 0J  and is the scale of characteristics ( )sbG ω  and ( )sbD Σ ω . With the 
increasing of the moment of inertia is to the stability region expands proportionally. 
Therefore, to ensure stable mode of operation of ACS, where the control object has a 
large inertia, easier. 
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