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Gamma distributed time-delayed model of two linearly coupled Goodwin 
oscillators  

We have obtained the new system of differential equations for the interaction of two 
linearly coupled Goodwin’s oscillators with gamma distributed time-delay kernels.  

An open economy exponential delay time business cycle Goodwin’s model 
for two regions can be written as a following system of two second order differential 
equations [1] 
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Here t denote the time, subscripts 1, 2i =  denote the economic regions (or the 
countries), iy  - regional income, si - marginal propensity to save, iе  - adjustment 

time, 1 2θ θ θ= =  - delay time, mi - marginal propensity to import, Ai - regional 

autonomous investment, ( )i xϕ - nonlinear accelerator,  

( ) ( )0 0, 0,i i xϕ ϕ′= ≥ ( )0 0,i irϕ′ = >  

ir - acceleration coefficient, ciϕ  and fiϕ  - the Hicksian ‘ceiling’ and ‘floor’ 
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We assume zero initial conditions 
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i
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y
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The system (1) was obtained by generalizations of the well-known Goodwin 
model for one region [2].  
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Miki et al [3] proposed the fixed delays form of Goodwin’s business cycles 
interaction for two regions. The model [3] contains two first order neutral delay 
differential equations 
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where subscript d means delayed. We assume zero initial functions  
( ) 0, 0iy t tθ= ≤ ≤ . 

 It is easy to verify that equations (1) and (2) can be written as the following 
system of integro-differential equations 
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where ( ),w t θ  is the delay kernel satisfying 

( ) ( )
0

, , 1
t

w t s ds w s dsθ θ
∞

∞

− = =∫ ∫ . 

For Eq. (1) 

( ) 1,
t

w t e θθ θ
−−= ,           (4) 

and for Eq. (2)  

( ) ( ),w t tθ δ θ= − ,            (5) 

where ( )tδ θ−  is the Dirac delta function. 

The most important characteristics of ( ),w t θ  are the average delay time  

Td, its variance 2
dσ  and coefficient of variation dV  
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For delay kernel (4) dT θ= , dσ θ=  and 1dV = , and for kernel (5) dT θ= , 

0dσ =  and 0dV = .  
The distributions (4) and (5) have significantly different coefficients of 

variation (1 and 0, respectively). For modeling the more real case  
0 1dV< <  

 can be used the gamma distribution,  
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To simulate the time behavior of income for a single Goodwin equation, this 
distribution was used in [4, 5].  If ∞→k , then Gamma distributions tends to 
( )sδ θ−  and Eq. (3) reduces to Eq. (2). 

It can be shown that Eqs. (3) are equivalent to the system of ODE’s. To see 
this, we consider such an integral 
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We assume that for ( ) 00 ss f =<  and apply the Laplace transform to Eq. (7). 
According to the convolution theorem 
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This means that the following differential equation holds 
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Therefore Eqs. (3) are equivalent to the system of 4k+6 ODE’s 
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Conclusions 

To improve the modeling of the time behavior of the income for two linearly 
coupled Goodwin equations, it is proposed to use a continuous delay model with the 
kernel in form of a gamma distribution (6). A new system of differential equations is 
obtained.  
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