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Mathematical modeling of the motion of a mechanical body in a viscous liquid

An arbitrary spatial motion of a body in a viscous non-solvent fluid is investigated. A
system of dynamic and kinematic linear differential equations describing this motion
is obtained. Asymptotic splitting of the system of differential equations into two
subsystems is carried out, one of which describes the longitudinal translational
motion of the investigated body, and the other — its lateral motion.

An important tool for studying the dynamic processes of mechanical systems
is their mathematical modeling [1]. The set of mathematical relations should
adequately and correctly describe the dynamics and statics of the object under study,
as well as its behavior and the main characteristics. To study and analyze the
complex spatial motion of mechanical bodies in a liquid or gas [2, 3, 4], it is also
essential to decompose a complete system of differential equations onto the
subsystems that describe the movement of a body in separate directions [5]. It is
necessary to take into account a number of features due to the physics of the process,
in particular, the nature of aerohydrodynamic forces and moments.

The purpose of this work is to study and simulate the spatial motion of a
mechanical object in a non-elastic viscous fluid, as well as the asymptotic splitting
of a complete system of linear differential equations describing its motion.

Consider the body that carries out arbitrary spatial movement in a viscous
liquid. To simplify the form of the equations describing this motion, we will assume
that the body has two planes of symmetry Oxy and Oxz and coordinate axes

Ox, Oy, Ox are the main axes of inertia of the body.

Then, due to the symmetry of the body relative to the plane Oxy rotational
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Assuming that the rotation of the body does not cause a change in the
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longitudinal force (i.e. =0), and using the laws of the amount of

o, - o, - 0w,
motion and moments of the amount of motion [3], we obtain a system of differential
equations of motion of a body in a liquid:
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where: v, v, v, — projection of the velocity vector of the translational pole on the
corresponding axis of the connected coordinate system; w,, w,, w, — projections of
the vector of angular velocity on the corresponding axes of the connected coordinate
system; L — the velocity of the translational motion of the pole; 7 — traction
power; P — residual buoyancy; G — gravity; M — body weight; x,, v,z —
coordinates of the center of gravity in the axes x, y,z; § — middle area; L — body
length; 5,5, — the angles of control of the controls in the horizontal and vertical

planes, respectively; p — liquid density; o — angle of attack; B — the drift angle;
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0, ¢,y — Euler angles; PesPys P, — radii of inertia; K, - coefficients of the

connected masses;
X, =X +k X, =x/L;
c.(B.3,). ¢, ¢,(0.8,),m (a,8,), m,(B,8,) — -coefficients of positional
components of hydrodynamic forces and moments.
Let projections of the vector of angular velocity of a body w,,w,,w, are
small (we neglect the product of these projections and the sum of their squares), the
projection of angular velocity w, it is much smaller, than projections w,,w,,

projection of the velocity vector of the translational motion v ,v  is small

compared with the projection v _, the deviation of the center of gravity from the

diametral plane and the middle plane is small. In order to fully describe the spatial
movement of the body, it is necessary to add six kinematic equations to the system
of dynamic equations (1). Then a complete system that describes the arbitrary
movement of the body in a viscous liquid, has the form
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This complete system is represented as two related subsystems (2) and (3).
The subsystem (2) describes the longitudinal movement of the body, that is, the
translational motion along the axes Ox i Oy, and rotational motion around the axis
Oz . The subsystem (3) describes the lateral movement of the body, that is, the
motion of the pole along the axis Oz, and the rotation of the body around the axes
Ox and Oy .

Let us find out the nature of the dependence of the functions of longitudinal
motion F, ,F, ,F, ,F, on the variables of lateral motion ¢, 3, w, , that is the nature
of the dependence of 4, 4,, 4, on ¢,B, w, .

Coefficient of the strength of the frontal support ¢, is an even function of
the variables o, 3, but it does not depend on variables w_, w,, w, . Coefficients of
positional forces and moments ¢ (a,8,) and m (a,8) do not depend on

W,

O, W, Wy, W, . Rotational derivatives c):,m* at any angle the attack does not
depend on @, w,, w,,w., and at small angles of attack (less than 7°) also do not
depend on o, . Given the symmetry of the investigated body derivatives c)* i

m}* are even in a variable . Thus, the function F, ,F, ,F, areevenin ¢, [4].

System of equations
v, =vcosfcosa; v, =-vcosPfsina; v, =vsinf “)
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can be easily solved with respect to variables v, o, 3 . Substituting

szu(ux,uy,oz), otzfa(ux,oy,oz), B:fB(UX,UJ,,UZ)

in the complete system of equations of motion (2) and (3), we obtain a system of
nine differential equations, and the functions in the right-hand sides of the equations
of longitudinal motion FJY:FJ,‘ ,F ,Fy , will be like functions F, ,F, ,F, ,F, even in
variables of lateral movement @, v_, w, .
Let's introduce the following notation:
M =05 =05 Ny =w; My =0 Ny=05 Ng=w,; N =w,; Ng=y; Ny =¢;
R=F B =F F=F F=FF=F F=F F=F F=F;F=F,
Let us rewrite the system of equations (2), (3) in the vector form

d
7?:F(t,n), 5)

where n' = Hnl, MNyse-osNo 15 «'» — sign of transposition.

Consider the movement of the body in the neighborhood of the nominal
motion
n=mn. +eAn. (6)
The degree of small perturbation is characterized by some parameter €,
0<e<1.Then
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Let us expand the right part of the relation (7) into a Taylor series by
parameter € An :
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Taking into account that identical relations are executed ;* =F(t,n.),
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Each of the equations will be written in detail as follows:
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Given that F, ,F, ,F, are even inv_, ¢, and Fj is even in ¢, in the

Taylor expansion there are no members
dF, dF, dF, dF, dF, dF, dF,

dp do, d¢ dv, dp dv, do
that is subsystem (8) with € =0 (in the linear approximation) integrates regardless
of the system (9).

As a result of the study of the motion of the body in a viscous non-resistible
liquid, a complete system of differential equations describing the dynamics of this
body is obtained. The complex motion of the body was considered as a combination
of longitudinal and lateral movements, and these movements are interrelated, since

the variables of the longitudinal motion v,v, v ,w 6,0 and alternating lateral

>

movements v_,w_,w,,y¥, ¢, are included in both subsystems. In the linear

approximation, the longitudinal movement of the body, that is, the translational
motion along the axes Ox and Oy and rotational motion around the axis Oz, does
not depend on the lateral movement, but the lateral movement, that is, the motion of
the pole along the axis Oz and the rotation of the body around the axes Ox and Oy,
depends on the longitudinal motion.
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