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Dynamic research of reduction valve 

The article is purposed to show the principle of work of the reduction valve as an 
example of linear automatic control system. We are going to consider the constant 
pressure control device dynamics.  

The reduction valve is represented as a constant pressure control 
device in the given diagram. In such conditions, a low internal resistance of a 
pressure source for the whole range of fluid flow variation is assumed. This 
value of internal resistance is taken independently on the time and the load 
parameter. The linear throttle of the variable cross-section which depends on the 
time only is chosen as a load of the valve in Fig.1. and represented as the sum of 
the constant and variable components ௧݂௛ ൌ   ଴݂ ൅ ݂ ሺݐሻ. 

 

 
Figure.1 The linear throttle as a load of the valve. 

 
The load linear throttle characteristic inclination pн ൌ fሺQሻ must be 

positive, because at zero and negative characteristic inclination it loses its properties 
maintain the constant pressure. The variable pressure reducing transition process at 
the valve outlet after the step reduction in time of the load throttle cross-section is 
shown in Fig.2. The pressure in the reducing zone rapidly rises because the valve 
moves downward. 

 
Figure.2 The step reduction in time of the load throttle cross-section. 
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 The fluid flow reduction through the load throttle (third graph in Fig.2) 
and along with it the reduction of pressure in the cavity of the reducing valve (ݐ)ݎ݌ is 
the second reason of the valve displacement downward. 
The continuity equation of the reduction valve control volume. Let distinguish 
the open deformable control volume of the reducing cavity between the cross 
sections of the throttle control slot of the valve (Fig.1) and before the throttle of the 
load, have a form: 
                             ୢMሺ୲ሻ

ୢ୲
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The equation of forces is the second major equality of the dynamics 
descriptions of the object. The pressure reducing force acts and directed downward 
on the sliding shutter with mass m in Fig.1. According to the law of momentum 
change (Newton’s second law), the equation of forces projected on the X axis is 
written as: 
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                     (2) 
The phenomenon of reducing in the operating point (Fig. 3) depends on the 

strength of the spring pre-tensioning and the valve saddle area. 

 
Figure.3  

 
The pressure substitution to the left part of the equation removes the 

constant components pr0F = Ch0 that do not contain the perturbations f (t): 
                                     ݉ௗమ௫ሺ௧ሻ

ௗ௧మ
൅ вܭ

ௗ௫ሺ௧ሻ
ௗ௧

൅ ሻݐሺݔܥ ൌ െ݌ܨሺݐሻ                      (3) 
Differential equation of the second order for the variables of zero initial 

conditions x0 = 0 cannot be integrated, as its right part is an unknown function of the 
time. Let use Laplace transform to solve this equation. The image of original is 
denoted by the capital letter X(S) in the operator function S = d/dt the most 
important property of which is written by three equalities:   
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Operator S = d/dt due to integration with respect to time is considered as 

constant. After simplification we get the first transfer function of the linear model of 
the reducing valve in the form of rational fraction: 
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The second transfer function describing transient process changes of pressures 
reduction in the cavity is obtained by the removing of the image X (d) in favor of the 
image (Ps) of the system equations. We get image Х(s) as: 
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In this formula the three-term square is designated by symbol   ߠሺݏሻ ൌ
ଶݏ݉ ൅ ݇௕ܵ ൅  As a result, the equality can be written as the second transfer .ܥ
function of the reducing valve by pressure (TFP) 
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                              (7) 
From the theory of linear differential equations stability is provided by 

fulfill of a system of inequalities for the third order equations: 
                        ܽ଴ ൐ 0; ܽଵ ൐ 0; ܽଶ ൐ 0; ܽଷ ൐ 0; ܽଵܽଷ ൐  ܽ଴ܽଶ;                    (8) 

The fulfill of inequality does not provide the dynamic quality of the object. 
It is necessary to choose such combinations of coefficients of the denominator of 
transfer functions at which dynamic quality will be the best. Small overshoots or 
dips of pressure reduction and minimum time required for a step perturbation.  

The proof of the fifth Hurwitz inequality follows from the analysis of 
denominators (5) and (7) by the frequency method. In the first transfer function 
valve lift of the transfer function by transition (TFT), there is no differentiation 
operator in its numerator and therefore is convenient to choose for frequency 
analysis this function. The replacement of the differentiation operator with an 
imaginary unit corresponds to the choice of the harmonic perturbation of the throttle 
slit in the valve load  ܨሺݐሻ ൌ ଴݂ ൅  ௠݂ sinሺ߱ݐሻ for some open mid-rise х0 operating 
point on its head characteristics (Fig. 3) by substituting ܵ ൌ  in denominator (5) ݓ݆
we can select the current ܦሺݓሻ and imaginary parts ݅ܯሺݓሻ. So, we get simple 
expressions of the active and imaginary parts of TFT depending on the circular 
frequency ߱ : 
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Nyquist diagram, amplitude and phase frequency characteristics. It gives us 
possibility to determine the stability and quality of transient process. Thus, at zero 
frequency, the partial values of the module consist only of the real part  ሺܹ௝బሻ ൌ  

௕బ
௔బ
 . 

At low frequency ߱ ൏ ߱90 , ܾሺ߱ሻ  ൏൏  ܽሺ߱ሻ , the real part does not 
decrease significantly, and the imaginary part grows rapidly with increasing 
frequency. The phase angle is negative. At medium frequencies in the range, the 
value of the TFT module can significantly increase due to the imaginary part, with a 
small value of difference ܽଷ

௔బ
௔మ
െ ܽଵ. At high frequencies in the range  ߱ଵ଼଴ െ 

గ
ସ
൏

߱ ൏ ߱ଵ଼଴ ൅ 
గ
ସ
  TFT module at another small value of difference ܽଷ

௔బ
௔మ
െ ܽଵ also 

increases, but due to the increase of the real part of the TFT in the frequency ߱ଵ଼଴.  

Conclusion 

1.) The reduction valve is represented as a constant pressure control 
device. It keeps a constant fluid flow pressure after the valve and before the load in 
the case of the control device and its load is connected in series. 2.) In order to 
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describe the dynamics of the considered object it is possible to use two main hydro 
pneumatic equations: the continuity equation of the system; the equation of forces of 
the sliding valve; 3.) A significant increase in fluid compressibility coefficient at 
small values, significantly reduces the stability of the regulator, and in the medium 
and large values, practically does not change region of stability or even expanding it; 
4.) When designing and calculating regulators, it is recommended to select the 
values of the areas, located on the right branch of the stability curve, since this 
provides a wide band of operating frequencies. 
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