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Crack length distribution model for fatigue damage 

This paper proposes the crack lengths distribution model in case of fatigue damage. It 
is based on experimental studies of the initiation and growth of fatigue cracks in a flat 
specimen with many holes. Hyperbolic functions and their approximation by Pareto 
distribution are used to create the model. 

The correlation between the number and size of defects is a fundamental 
characteristic of solids damage in fatigue destruction. Such correlation in the form of 
statistical distribution of crack lengths can be used to create models of destruction 
for solids and to solve many problems in prediction of aviation structures bearing 
capacity. To create the model we will use the data of our own experimental studies. 
The experiment investigated the propagation of fatigue cracks in the flat specimens 
with many concentrators at three load levels. The geometry of specimens, the 
method of fatigue tests conducting, monitoring of the cracks behavior and measuring 
their lengths are agree with the work [1]. 

The maximum length of the monitored cracks was limited to the distance 
between adjacent holes in the specimen and equaled 16 mm. The dependence of the 
crack lengths a on the number of load cycles N in this dimensional range can be 
described in a semi-logarithmic coordinates by the linear function 

 hNpa +=ln . (1) 
There were 49 cracks, monitored during the experiment. The growth of each 

of them was well described by the dependence (1) (Fig. 1). If the initial size of the 
crack 0a = 1 mm, from (1) follows 

 0hNp −= , (2) 
where 0N  – the number of cycles to 0a  crack initiation. Substituting the relation (2) 
into equation (1), we obtain 

 )](exp[ 0NNha −= . (3) 
The coefficient h determines the growth rate of the crack on its length and is 

a function of the operating stress. It should be noted that the exponential growth of 
fatigue cracks at the initial stage of propagation is characteristic of many materials 
[2], including aluminum alloys of aircraft structures [3]. At a fixed level of the 
operating stress, the coefficient h of the equation (3) gives the random growth rate of 
the crack, and therefore it is a random variable. For statistical samples of 
investigated cracks at operating stresses, the distribution of this coefficient values is 
satisfactorily described by a uniform law with a distribution density 
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where minh  and maxh  – interval limits of coefficient h possible values. 
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Fig. 1. Approximation of the crack length dependence on the number of cycles by 

the linear function for stress 90 MPa. 
 
The intensity of the cracks initiation can be determined by the dependences 

of the accumulated cracks number n on the number of load cycles N (Fig. 2). 
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Fig. 2. Dependence of the cracks number in the specimens on the number of 

load cycles at different values of the maximum stress: 1 – 80 MPa; 2 – 90 MPa; 3 –
 110 MPa. 

 
With the linear approximation of the obtained data (Fig. 2), it can be 

assumed that the intensity of crack formation л  for each level of stress is a constant 
value. The values of the parameter л  and its application intervals are summarized in 
Table 1. 
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Table 1 
The values of the crack initiation intensity and the intervals at different 

maximum stresses 
maxу , MPa л , cycle-1 minN , cycle maxN , cycle Correlation 

coefficient 2R
80 0,0128 500000 1350000 0,973 
90 0,0371 220000 710000 0,976 
110 0,0510 100000 360000 0,924 

 
The statistical scatter of the crack length values at a constant level of cyclic 

stress depends on two random factors – growth and initiation of flaws in time. 
Assuming that all cracks grow at a deterministic rate, but each has initiated at a 
random number of cycles, the scatter of their size values would depend only on the 
duration of growth. The cracks that have initiated earlier would have a greater 
length. The distribution of the flaw sizes in this case is determined by the 
distribution of life to crack initiation [4]. 

Let’s consider how the distribution of the crack lengths is described, taking 
into account their experimentally established regularities of behavior and random 
initiation and growth. To achieve this goal we will use the approach described in [5]. 

We introduce a parameter of size y, which is related to the crack length as 
ay ln= . Then (1) can be rewritten in the form 
 hNpy += . (5) 
Let’s define the distribution function of the parameter y at a fixed moment of 

life minNN >′ . It is quite obvious that in case of the same growth rate for all cracks, 
the appearance of some yy ′<  is possible only if this crack has initiated after y′  
(i.e. 0NN ′> ). Assuming that the initiation of cracks corresponds to the Poisson 
flow of events, which has properties of regularity and absence of consequences, the 
probability of crack initiation in the interval of life ],( 0 NN ′′  taking into account (3) 
will be determined as 

 { } )](лexp[1],(€
000 NNhNNNP ′−′−−=′′∈ . (6) 

In accordance with equations (2) and (5) we can write: 
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Then, taking into account (7), the expression (6) will look like 
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From (8) it follows that the conditional distribution function of the parameter 
y for a given value of h does not depend on the cyclic load and takes into account 
only the random initiation of defects. The effect of cracks random growth on the 
distribution of their lengths can be taken into account by the random variable h. 
Applying the formula of full probability for the conditional distribution function (8) 
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and taking into account the empirical distribution of the parameter h (4), we obtain 
an unconditional distribution function of the flaw sizes parameter y: 
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Applying to (9) integration with the change of variable we have: 
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The formula for the distribution density of the parameter y is obtained by 
differentiating (10) by this parameter: 
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The change of the parameter y distribution (11) into the distribution of the 
crack lengths a is performed on the basis of the variate transformation rule and we 
obtain the formula for the crack length density: 
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Note that the function (12) is positive and corresponds to normalization 

condition ∫
∞

=
1

1)( daaf , that meets the requirements for the distribution density of a 

random variable. The calculations carried out by the formula (12), taking into 
account the experimental values of the parameters л , minh ,and maxh  indicate the 
hyperbolic type of function for the density distribution of the crack length a. The 
calculated dependencies are well described by the functions of the form: 
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For 1г >  and bounded interval a ( 1≥a mm), the function (13) has the 
property of a one-parameter distribution density of the crack lengths – it is positive 
and satisfies the condition of normalization. The function of the crack length 
distribution corresponding to the density (13) in the 1≥a  mm region is determined 
as 
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Consequently, instead of formula (12), a simpler expression (13) can be used 
to describe the crack length distribution. In the further analysis of the dependencies 
(13) and (14) it was found that they are converted into a well-known Pareto 
distribution by a simple substitution 10 =a  and 1г −=k . Pareto’s distribution 

function is ( )
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carried out on the given formulas well approximate experimentally obtained density 
distributions of the crack lengths (Fig. 3). 
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Fig. 3. Approximation of the experimental distribution densities of the crack lengths 
at different values of the maximum stress: 1 – 80 MPa; 2 – 90 MPa; 3 – 110 MPa. 

 
Conclusion. The probabilistic distribution of the fatigue crack length 

obtained on the basis of their random initiation and growth parameters in case of 
multiple site damaged specimens with many concentrators is well described by the 
power function of the hyperbolic type. Taking into account experimentally 
determined values of that parameters, this function is converted into the distribution 
density of the crack lengths based on the Pareto distribution, which can be used to 
describe the general case of multiple destruction of solids. 
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