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Modelling of creep and fatigue life of viscoelastic metal matrix composites  

Correspondence principles for quasilinear viscoelastic material proposed to 

determine the relations between the current stress, or strain, and the instantaneous 

elastic stress, or strain. Stress concentration near inclusions evaluated, and fatigue 
criteria Hashin's type for composite material used for fatigue life prediction and 

nondestructive control problems of composites. 

 

Metal matrix composites (MMC) used in aviation structures can experience 

fatigue damage and failure due to the repeated loads. Theoretical estimation of 

remaining lifetimes and residual strength is an important problem of solid mechanics 

and mathematic modeling. The response of composite structures under fatigue loading 

is a problem that has led to the development of a numbers of fatigue prediction models. 

The focus of this paper is on the strength degradation effects, continuum damage 

mechanics approach, and micromechanics model capabilities [1-3]. 

A commonly used approach in fatigue life predictions is to use stress versus 

life, known as S N   curves. The constant amplitude cyclic loads are characterized 

by the mean stress level m  and the amplitude a   of the stress variations around 

the mean. This is alternatively expressed in terms of the maximum stress and the 

stress ratio or  R -ratio. The situation is more complex in the case of heterogeneous 

media, strong stress triaxiality, and rheology time presence. For the analysis of creep 

fatigue problems in the framework of the quasi-linear viscoelasticity model, we use 

the correspondence principle, which is different from that used in the linear theory 

[4]. In this case, there is no assumption of an analogy between the defining relations 

of nonlinear elasticity and nonlinear viscoelasticity. Let t  be the time, x , ( , )tу x ,

( , )te x and ( , )tu x  be the position, the current stress, the current strain, and the 

current displacement in three-dimensional case, respectively. We assume that the 

viscoelastic material possesses instantaneous elastic response 

( , ), ( , ), ( , )el el elt t tу x e x u x . The model requires that the loading curves and the 

unloading curves must fall in the same curve, and the stress and the strain must 

return to the origin simultaneously. It follows that there exists a strain energy 

function ( , , )W te x  with the property that 
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This equation defines the nonlinear elastic constitutive relations. To 

formulate the correspondence principles, we write down the constitutive equations 

of quasi-linear viscoelasticity between the current stress ( )tу  and ( )el tу  the 

instantaneous (elastic) stress  
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and constitutive relations for creep    

( ) [ ( )] , ( ) / (0)el t t d d d te шу h e e h h e h E E . (3) 

Quasi-linear viscoelasticity allows generalizing the classical approaches in 

mechanics of composites [1]. We use here the enhanced viscoelastic model with 

internal parameter of stored damage D  [3]. The local and overall constitutive 

relations between the infinitesimal strain ( , )te x  and the Cauchy stress ( , )tу x  fields 

can be expressed as hereditary integrals. At the micro-scale of individual r  

constituents these are presented by [5] 

( , ) ( )( , ),el
r rt t vx q e x xe .  (4) 

Space coordinate x  denotes a material point within any phase r  of the 

composite and  stands for the Stieltjes convolution product. Similarly, the 

macroscopic or effective constitutive relations can be written as 

( ) ( )( )
U
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у
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Here ( )te  and ( )tу  are the macroscopic, or averaged, strain and stress, 

the angle brackets denote spatial averaging over a representative volume element of 

the material. Four order tensors ( )r tq  and ( )tq  are the local in phase r  and 

effective creep reduced functions of the composite, respectively. In Fig. 1, it is 

shown how a visco-plastic model can be derived from a plastic model, by adding a 

dashpot. The resulting model is the so-called generalized Bingham’s model. The 

original Bingham’s model involves neither the spring assembled in series ( E , no 

instantaneous elastic behavior, this is a rigid visco-plastic model) nor the spring in 

parallel ( 0H , no hardening). The elastic nonlinear strain is characterized by the 

spring ( )E e , the visco-plastic strain, denoted by vpe , is illustrated by the parallel 

assembly of the friction device and the dashpot. The equations of the model are 

obtained by combining all the elementary subsets 

, ,vp v r vp p
yX He e  where X, v  and p  are respectively the 

stresses in the spring H , in the dashpot and in the friction device, and 
v pX .  An elastic domain is then present in this visco-plastic model. 

The border of the domain is reached when p
y .  

The strain equivalence hypothesis, which states that any deformation 

behavior, whether uniaxial or multi-axial, of a damaged material is represented by 

the constitutive laws of the virgin material in which the usual stress ( )t  is replaced 

by the so-called effective stress ( )t , which enables the definition of an effective 

stress 
1( ) ( )(1 )t t D .   (6) 
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In our model, the viscoelastic strain energy function ( )W t  is coupled with 

damage parameter D . The expression of ( )W t  is defined as [2] 

1 2
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e e
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where ( )tE  is relaxation tensor. The internal scalar variable D  models the 

damage, which is assumed to be isotropic and varies between 0  for undamaged 

material and 1  under complete failure. The thermodynamic force associated with 

D  is denoted /Y W D . The constitutive equation may be written in the 

compliance formulation to describe creep phenomena  
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According to (5) in quasi-linear viscoelasticity, for the proposed viscoelastic 

model coupled with damage the expression of stress is written as  
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The stress ( )tу  is thus related to the damage variable ( )D t  and to the whole 

history of viscoelastic strains ( )te  throw the energy ( , )W te  via Boltzmann’s 

hereditary integral. Note that the constant volume concentration of phases remains 

unchanged after transforming from the time domain to the Carson domain. The 

Fortran95 programs from NAG-Fortran library we use for numerical analysis 

required. Statistical averaging of expressions is performed to define the mean 

deformation of short inclusions randomly oriented in volume. The result is that 

overall response of such a composite is isotropic [3]. Stress concentration near 

inclusions and overall creep response are modeled in the three-component metal 

matrix composite with aluminum viscoelastic matrix [1].  

 

In this work, we use Hashin’s [2] failure criteria to determine the fiber and 

matrix failures in a multicomponent composite. Equations that summarize the failure 

envelopes for fiber and matrix failure are obtained from Hashin’s criteria. Short 

fibers and matrix failure in tension will be  
2
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In equations (10), TX  and CX  are the longitudinal tensile and compressive 

strengths, TY  and CY  are the transverse tensile and compressive strengths, 12S  is 

the in-plane shear strength, and 23S  is the out of plane shear strength. An 

instantaneous matrix stiffness degradation scheme is used for the progressive failure 

when matrix or fiber failure is detected. We evaluate here the residual stiffness of 

the representative volume following failure in each mode [2]. In other words, the 

fatigue model used here is based on stiffness and strength reduction directly applied 
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to the engineering stiffness constants and strengths that are RVE properties. To 

quantify and visualize the level of damage, a measure of the relative reduction in the 

stiffness/strength parameter due to damage PD  is calculated using equation (10) 
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The non-linear cumulative damage rule for isotropic viscoelastic composite 

materials is used here. Scalar damage variable ( )D t  evolves with the number of 

cycles. The evolution of damage is governed by increment methods [5] 
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N is the number of cycles at the current stress state k , kD  and 1kD  are 

the amount of damage after the current, and previous cycles, respectively, f  is a 

material parameter, and f  is a function of the current triaxial stress state [6]. 

The fatigue life of composites is evidently connected with stress 

concentration on the interphase surfaces. To present the formulation of the general 

interface model we introduce the following normal н  and tangent з  projection 

tensors of second order  

  ; .н n n з 1 н   (13) 

Symbol 1  is the 3D second-order identity tensor. Let us construct further 

the normal N  and tangent T  projection tensors of fourth order by 

;    N I T T з з , (14) 

I is the fourth-order identity tensor for the space of second-order symmetric 

tensors. In fact, T  and N  correspond to the exterior and interior projection 

operators of Hill [3]. Next, we write 
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where the second-order tensor G  is calculated by 
1   ,G Q Q nE n . 

In addition, the tensors ( ), ( )Г n Р n , relaxation function ( )tE  and creep function 

( )tJ  are connected by the identity  JР ГE I . 

Some numerical examples were analyzed. Properties of fibers and matrix are 

presented in Table 1. It should be noted that results of fatigue life prediction with the 

model proposed are in an acceptable correlation with known from literature 

experimental data.  

Table 1. 

Constituent nonlinear elastic material constants, GPa, for the B/SiC/Al2024 

composite.   

Material E , GPa   1  , GPa 2 , GPa  3 , GPa  

Boron 467.3 0.361 -840.0 -420.0 -390.0 

SiC 440.3 0.171 -227.2 31.5 -170.75 

Al2024 80.34 0.296 -115.0 -160.5 -108.75 

 

As a conclusion, we may notice that the viscoelastic model with internal 

parameter of stored damage suggested here be useful for long-term durability 

prediction and nondestructive control problems of composite elements.  
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