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Formation of ultrashort pulses of THz range in narrow- gap semiconductors 

The nonlinear propagation of transversely bounded terahertz pulses in bulk narrow-
gap semiconductors like n-InSb is investigated theoretically. The cubic nonlinearity is 
due to the nonstandard dependence of the electron energy on the quasi-momentum. 
The nonlinearity possesses the focusing character both in longitudinal and transverse 
directions. The direct simulations are realized by FDTD method. The extreme 
narrowing of terahertz pulses occurs. The role of nonlinear dissipation is discussed. 

Introduction. 
 The electromagnetic (EM) radiation of the terahertz (THz) range f = 100 

GHz - 30 THz is used in spectroscopy, medicine, introscopy, and environmental 
science [1,2]. In THz range under the temperatures T ≥ 77 K narrow-gap 
semiconductors like InSb, InAs, CdxHg1-xTe possess the nonlinearity due to the 
nonparabolicity of the electron dispersion law [3-7]. It is important that this 
nonlinearity results in the nonlinear focusing both in longitudinal and transverse 
directions and, thus, to the modulation instability (MI) of long input pulses and the 
wave collapse of short pulses [6,7]. The interaction of THz radiation with narrow-
gap volume semiconductors like n-InSb and low dimensional structures like 
graphene is of great interest, because it gives a possibility to create both active and 
passive optical and electronic devices [6-10]. But when the compression of short 
envelope pulses occurs, the approximation of slowly varying amplitudes becomes 
doubtful, and the direct simulation of dynamic equations is needed. 

In the report the nonlinear EM phenomena in the narrow-gap semiconductors 
like n-InSb are investigated by means of direct simulations of dynamic equations by 
the direct finite differences in time domain method. The nonlinearity of the electric 
current due to nonparabolicity of dispersion law of conduction electrons is 
considered as well as the dielectric nonlinearity. The electron concentrations are n0 
= 1015 – 1016 cm-3. Short input pulses are considered with the carrier frequency of 
THz range ω ≥ 1013 s-1. The carrier frequencies of the input pulses can be close to 
the frequency of the transverse optical phonons ωT ~ 3⋅1013 – 4.5⋅1013 s-1, and the 
nonlinear equation for the polarization should be included. The nonlinear 
phenomena are investigated that cause the nonlinear pulse compression. When the 
carrier frequency of the input EM pulse is chosen ω  ≤ 0.6ωT, the signs of the cubic 
nonlinearity, dispersion and diffraction coefficients correspond to nonlinear 
focusing, or the compression of the pulse in all directions. At higher carrier 
frequencies 0.6ωT < ω  < 0.8ωT only the transverse compression occurs.  
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Model and basic formulas.  
 Consider volume n-InSb with the equilibrium electron concentration n0 ~ 
1015 - 1016 cm-3 under the temperatures T ≥ 77 K. The EM nonlinearity is due to the 
electron nonlinearity of the Kane dispersion law, or the nonstandard dependence of 
the electron energy Ε  on the quasi-momentum p [3,4]. The hydrodynamic equation 
of motion of the electron gas can be presented as [4]:  
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Here v is the electron velocity, m* is the effective mass, gΕ is the forbidden gap.  
Note that the dependence of the electron velocity on the electric field obtained from 
Eqs. (1) coincides with the expression derived from the kinetic theory [8]. The role 
of dissipation is discussed below.  

The propagation of transversely polarized E =Ex EM wave is investigated. 
The basic equations are the EM wave equation, the hydrodynamic equation for the 
electron velocity, and the equation for the lattice polarization P/4π: 

.))0(()1(

;
*

}
)1(

{

;0
41

2
2

0

2
2

2

2

2/1
2

2

2
0

2

2

22

2

22

2

E
t
PP

P

P
t

P

E
m
ev

v

v
v

t

t
v

c

en

t
P

ct
E

c
E

z
E

TT

n

∞

∞
⊥

−=
∂
∂

+++
∂

∂

=+

−
∂
∂

=
∂
∂

−
∂

∂
−

∂

∂
−Δ−

∂

∂

εεωγω

ν

πε

   (2) 

Here ε(0), ε∝ are low- and high-frequency dielectric permittivities, ωT is the 
frequency of transverse optical phonons, γ is the lattice dissipation [4]. In the 
equation for the electron velocity the term with dissipation νv is included. Generally 
the collision frequency ν depends on the velocity. Also possible dielectric 
nonlinearity is included, the term with P3 in the equation for the polarization. The 
parameter P0 determines the value of this dielectric nonlinearity.  

The new functions u, A are introduced:  
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Eqs. (2) can be rewritten as: 
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ω = is the electron plasma frequency. 

In the linear case Eqs. (2) correspond to the following effective permittivity 
that includes both the polarization and the conductivity: 
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One can see that the propagation of linear EM waves of THz range is 
possible for Re(ε(ω)) > 0, or within the frequency interval ωp/ε(0)1/2 < ω < ωT. 

To specify possible nonlinear effects for envelope pulses, write down a 
simple parabolic nonlinear equation for the slowly varying amplitude B: 
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Here vg is the group velocity, g1 is the dispersion coefficient, g2 is the diffraction 
one, N is the coefficient of the cubic nonlinearity; Γ is the wave dissipation. The 
carrier frequency ω and the wave number k are connected by the linear dispersion 
equation k – (ω/c) (ε(ω))1/2 = 0. The nonlinear propagation of envelope pulses 
depends on the signs of the products g1 N and g2 N [11].  

In Fig. 1 the dependencies are given of the real part of the wave number 
k’(ω), the imaginary part k’’(ω), the group velocity vg(ω), the dispersion coefficient 
g1(ω), and the diffraction coefficient g2(ω) on the frequency ω.  The parameters of 
n-InSb are: the electron effective mass is m* = 0.014me, the frequency of transverse 
optical phonons is ωT = 3.376⋅1013 s-1, the electron concentration is n0 = 1016 cm-3, 
low and high-frequency permittivities are ε(0) =17.1, ε∝ = 15.2; the lattice 
dissipation is γ = 2⋅1011 s-1, the electron collision frequency is ν = 5⋅1011 s-1. 

One can see that the dispersion coefficient g1 changes its sign at ω ≈ 0.6ωT. 
When the nonlinearity is determined by the nonparabolicity of the electron 
dispersion (1), the sign of the nonlinearity is N > 0 [6,7]. Because the diffraction 
coefficient is g2 > 0, in the frequency interval ωp/ε(0)1/2 < ω < 0.6ωT the nonlinear 
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focusing, both longitudinal and transverse, occurs: g1,2N > 0. Thus, the volume 
nonlinearity of n-InSb results in the compression of the pulses in all directions in the 
pointed above frequency interval.  

At higher frequencies only the transverse compression occurs. But, when the 
doping level is small, the nonlinearity is purely dielectric, and its sign is N < 0. 
Therefore the longitudinal compression of envelope pulses occurs there in the i-
InSb. But the dielectric nonlinearity is semiconductors is usually smaller than one 
connected with the electron gas. 
 

 
a)  b)  c)  d) 

Fig. 1. Part a) is the linear dispersion relation k’(ω), curve 1, and the imaginary part 
k’’(ω), curve 2; part b) is the group velocity vgω); part c) is the dispersion coefficient 
g1(ω); part d) is the diffraction one g2(ω) for the electron concentration  in n-InSb n0 
= 1016 cm-3 and the collision frequency ν = 5⋅1011 s-1.  

 
Note that also there is a possibility to realize the resonant interaction 

between the first ω1 and the third ω3 = 3ω1 harmonics of THz EM waves: k(ω3) ≈ 
3k(ω1), when the first harmonic is chosen  ω1 ≈ 1⋅1013 s-1, see Fig.1, a. But this 
frequency tripling needs a special consideration.  

 
Simulations.  
The main goal of the simulations is to investigate the nonlinear compression 

of input envelope pulses, which include several oscillation periods. The case of 
axially symmetric input pulses is considered; the input pulse is:  
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The shape of the envelope of the input pulse is almost rectangular both for 
time t and for the transverse radial coordinate ρ. The parameters of volume n-InSb 
are: the electron concentration is n0 = 1016 cm-3, electron collision frequency is ν = 
5⋅1011 s-1, ωT = 3.376⋅1013 s-1. The carrier frequency ω has been chosen 1013 s-1 < ω 
<2⋅1013 s-1≡ 0.6ωT.  

The direct simulations of Eqs. (4) have been done. The explicit difference 
schemes have been used; the temporal step is chosen from the condition of 
numerical stability.  

The results of the simulations are given in Figs. 2-5. The electric field is 
normalized to En = m*v0/(etn) ≈ 2 abs. units ≈ 0.6 kV/cm, where tn = 10-12 s ≡ 1 ps. In 
all Figs. the maximum values of the THz electric field are depicted, as well as spatial 
distributions of the electric field within n-InSb. The center of the input pulse is at t1 
= 3 ps. 
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In Figs. 2-4 there are the dynamics of short envelope pulses at the carrier 
frequency ω = 1.4⋅1013 s-1. It is seen that in the linear case, Fig. 2, both wave 
dispersion and diffraction cause the broadening of the pulse. But when the input 
amplitude is higher and corresponds to small nonlinearity, Fig. 3, some pulse 
compression occurs. When the input amplitude becomes higher, Fig. 4, essential 
compression both in the longitudinal and transverse directions occurs. The 
transverse width ρ0 of the input pulse is optimal for compression at this carrier 
frequency, compare Fig.4, c) and d). 

In Fig. 5 the simulations of pulse propagation are given at higher carrier 
frequency ω = 1.6⋅1013 s-1. It is seen that the bigger transverse compression occurs 
there, whereas the longitudinal compression is smaller, compared with Fig. 4. 
 

 
a)   b)   c) 

Fig. 2. The linear propagation of the THz pulse of a small input amplitude Ei0 =6 
V/cm. The carrier frequency is ω = 1.4⋅1013 s-1. The transverse width of the incident 
pulse is ρ0 = 0.01 cm, the duration is t0 = 1.4 ps. Part a) is the spatial distribution 
E(z, ρ) at t =  5ps; part b) is E(z, ρ) at t = 7 ps. Part c) is the maximum value of |E(z, 
ρ)| under different moments of time, solid line; the dependence of |E(z=0, ρ=0,t)| is 
given by the dot line.  
 

 
a)   b)   c) 

Fig. 3. The nonlinear propagation of the THz pulse of a finite input amplitude Ei0 =3 
kV/cm. ω = 1.4⋅1013 s-1, ρ0 = 0.01 cm, t0 = 1.4 ps. Part a) is the spatial distribution 
E(z, ρ) at t =  5 ps; part b) is E(z, ρ) at t = 8 ps. Part c) is the maximum value of 
|E(z, ρ)| under different moments of time, solid line; the dependence of |E(z=0, 
ρ=0,t)| is given by the dot line.  
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a)  b)  c)  d) 

Fig. 4. The nonlinear propagation of the THz pulse of a finite input amplitude Ei0 =6 
kV/cm. ω = 1.4⋅1013 s-1, ρ0 = 0.01 cm, t0 = 1.4 ps. Part a) is the spatial distribution 
E(z, ρ) at t =  5 ps; part b) is E(z, ρ) at t = 9.5 ps. Part c) is the maximum value of 
|E(z, ρ)| under different moments of time, solid line; the dependence of |E(z=0, 
ρ=0,t)| is given by the dot line. Part d) is the maximum values of |E(z, ρ)| for 
another values of input transverse widths ρ0 = 0.009 cm, dash curve, and ρ0 = 0.011 
cm, solid curve.  

 
a)   b)   c) 

Fig. 5. The nonlinear propagation of the THz pulse of a finite input amplitude Ei0 
=4.8 kV/cm. ω = 1.6⋅1013 s-1, ρ0 = 0.025 cm, t0 = 1.4 ps. Part a) is the spatial 
distribution E(z, ρ) at t =  5 ps; part b) is E(z, ρ) at t = 10 ps. Part c) is the maximum 
value of |E(z, ρ)| under different moments of time, solid line; the dependence of 
|E(z=0, ρ=0,t)| is given by the dot line.  
 

Analogous pulse compression takes place in n-InAs, where the electron 
effective mass m* = 0.023me is bigger than in n-InSb. But the frequency of optical 
phonons is also bigger, ωT = 4.046⋅1013 s-1. Therefore the frequency range for 
observation of the pointed above effects may be wider than in n-InSb.  

When the electron collision frequency increases with the increase of the 
velocity, the pulse compression is also possible, but maximum values of THz 
electric field decrease.  

Therefore, the nonlinear compression of THz pulses is possible in volume n-
InSb in the specified frequency range defined by the plasma frequency and the 
frequency of the transverse optical phonons.  
 

Conclusions. 
The nonlinear longitudinal and transverse compression of short envelope 

terahertz pulses can be realized in narrow-gap semiconductors like n-InSb, n-InAs. 
The nonlinearity is due to the nonparabolicity of the dependence of the electron 
energy on the quasi-momentum. The carrier frequency should be chosen above the 
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cut-off frequency and below the frequency of transverse optical phonons and is of 
about 1.5 THz < f < 3.2 THz for the propagation in n-InSb.  

The finite differences in time domain simulations of dynamic equations have 
been used. In the specified frequency interval the nonlinear pulse compression 
results in the powerful terahertz pulses with the transverse localization < 0.01 cm 
and durations 1 – 3 ps.  
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