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Abstract. Monitoring and early diagnosis systems, on which the protection function of both 

hydroturbines and auxiliary power equipment rely, are becoming increasingly relevant. One of 

the most promising methods of technical control and diagnostics of hydo units is the analysis 

of their vibro-acoustic characteristics. But a significant technical problem that arises in the 

construction of such systems is the limited use of known sensors of vibration velocity and 

vibration displacement due to the fact that the rotary speed of hydro units is usually below the 

lower limit of operation of sensors of this type. One of the promising ways to solve this 

problem is using capacitive micromechanical accelerometers. However, the existing 

mathematical models describing this type of accelerometers have low accuracy, which limits 

their practical using. The mathematical models of the capacitive micromechanical 

accelerometer for static and dynamic modes of operation are developed in this article. It was 

established that this accelerometer has a constant sensitivity, therefore its static characteristic is 

linear. It is shown that in the dynamic mode of operation of a capacitive micromechanical 

accelerometer has a dynamic error component, the cause of which is its own displacement of 

the moving part of the sensor, which is due to the inertial properties of the moving part and 

elastic properties of stretch marks. The mathematical dependence of the absolute dynamic error 

of the capacitive micromechanical accelerometer is obtained, the removal of which from the 

measurement results will improve the accuracy of the specified primary measuring transducer. 

1. Introduction

As of today, a strong tendency has developed to construct systems for technical inspection and

diagnostics of electric power machines based on analysis of their vibroacoustic characteristics. This is

due to both a high informational content of this parameter and with the opportunity to measure the said

parameter directly in electric machine’s operational mode without the need to intervene into its design

[1, 2]. However, a significant technical problem that arises during construction of systems for

inspection and diagnostics of low-speed electric machines (including hydropower units of HPPs and

PSPPs) lies in a considerable limitation on the use of known sensors of vibration velocity and

vibration displacement due to the fact that rotary revolution speed in such machines is normally lower

than the lower boundary of operation for sensors of this type [3]. One of the approaches to solution of

this problems lies in the use of accelerometerers. That said, when analyzing technical characteristics of

known vibration accelerometers [4], one of the most promising ones to be used in systems for

technical inspection and diagnostics of low-speed electric machines is a capacitance micromechanical
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accelerometer. This can be explained by its low inertial mass (of some 0.1 mcg), high overload 

capability (of some 10,000 g without sensor’s breakdown) and a wide frequency range of operation 

(from static acceleration to single units of kilohertz). However, it follows from analytical review of 

accompanying engineering documentation and scientific-and-technical literature [4, 5] that existing 

mathematical models describing this variety of accelerometers are quite approximate. So, development 

of mathematical model of this primary measuring transformer is a relevant research-and-application task 

of considerable practical significance. 

2. Setting the task

The sensing element of micromechanical capacitance accelerometer is conventionally presented as a

structural diagram shown in Figure 1. It represents a differential condenser-type structure with an air

dielectric. Condenser’s electrodes are cut from a flat piece of polysilicon some 2 mcm thick. This

condenser’s stationary electrodes are represented by simple cantilever bars situated at the height of

some 1.3 mcm from crystal’s surface in the air on polysilicon anchor columns welded to the crystal at

the molecular level. The sensor’s design comprises more than 50 such sensing elements (elementary

cells). Acceleration sensor’s inertial mass during the sensor’s accelerated movement becomes

displaced in relation to the crystal’s other part. Its finger-like protrusions form condenser’s movable

electrode. Both sides of this structure rest against anchor columns. Stretches that hold the inertial mass

play the role of a mechanical spring of constant elasticity that restricts mass motion and ensures its

return to the initial position. Displacement of movable part in relation to the stationary one causes

change in capacity of each elementary cell of capacitance micromechanical accelerometer, which

corresponds to the primary measuring transformation of “acceleration into capacity” type [6].

Figure 1. Structural diagram of capacitance micromechanical accelerometer’s sensing element. 

The next measuring transformation being implemented during acceleration measurement using 

capacitance micromechanical accelerometer is transformation of “capacity into voltage” type, which in 

sensors of ADXLxxx series by Analog Devices is implemented by devices located immediately in the 

sensor’s housing, in their essence being its component part [7, 8].  

The aim of the work is to obtain a high-precision mathematical model that would describe the 

relationship between the input and output signals of the accelerometer in static and dynamic modes. 

The need for such the model is due to the using of the measuring transducer, as part of the technical 

diagnostic system of ow-speed electric machines (hydro units), in real time of their operation. 

Therefore, let us describe the highlighted measuring transformations in mathematical terms. 
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3. Analysis of approaches to problem solution 

Under acceleration, inertia force may be determined based on Newton’s second law as follows [9]: 

 ,eі eF m a   (1) 

where me is the mass of the elementary cell’s movable part; а is the acceleration of the elementary 

cell’s movable part 

Inertia force is counterbalanced by the spring’s counter force  

 ,fF k X   (2) 

where X is mass displacement in relation to the equilibrium position; k – elasticity coefficient of 

elementary cell’s stretches. 

Having equated the inertia force and spring’s counter force that is present in static mode of 

operation (measurement of uniform acceleration), we will obtain 

 ,e

e

k
a X S X

m
    (3) 

where Se is sensitivity of capacitance micromechanical accelerometer’s elementary cell. 

It follows from (3) that sensitivity of capacitance micromechanical accelerometer’s elementary cell 

is a constant parameter, the value of which depends on sensor’s structural parameters (k and me). 

Displacement of inertial mass takes place in the plane of polysilicon film. The sensor’s sensitivity 

axis also lies in this plane and, correspondingly, it is parallel to the plane of printed board, on which 

the sensing element is situated.  

At rest (constant-speed movement), all “fingers” of movable electrode, thanks to stretch’s action, 

are located at the same distance from the stationary electrode’s couple of “fingers”. At any 

acceleration, movable electrodes approach to one of assemblies of stationary electrodes and move 

away from others. As a result, relative displacement becomes nonuniform, and capacity between 

movable electrode and each of movable electrodes changes in proportion to vibration acceleration. Id 

est: 

 ,eС X    (4) 

where ΔСe is the change of capacity of the sensor’s elementary cell. 

Since capacitance micromechanical sensor contains n elementary cells being identical by their 

structure, located in the same plane, with their capacities connected between each other in parallel, we 

can write as follows: 

 1 2 ... ,na a a      (5) 

where ε is the acceleration measured by the sensor (input physical value). 

 
1

,
n

ei

i

С С


    (6) 

where ΔC is the change in capacity of capacitance micromechanical accelerometer. 

 
1

,
n

ei

i

m m


  (7) 

where m is the mass of the movable part of capacitance micromechanical accelerometer. 

Such being the case, having assumed the averaged value of elasticity coefficient of stretches of its 

elementary cells as the elasticity coefficient of stretches of capacitance micromechanical 

accelerometer, we will obtained: 

 .
k

X
m

   (8) 

Considering that, according to stated technical characteristics of sensors of ADXLxxx series by 

Analog Devices, technical characteristics of which we will use from now on, the time constant of 

measuring transformers of “capacity into voltage” type is considerably less than the time constant of 
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inertial mass, and the change in value of output voltage of the sensor (after transformers of “capacity 

into voltage”) is proportionate to the change in capacity of sensing element [7, 8], we will obtain: 

 ,
m

U C X
k

 
   

 
       (9) 

where β is proportionality coefficient of capacity transformation into increase of the sensor’s output 

voltage; γ is proportionality coefficient of transformation of the sensor’s movable part displacement in 

relation to stationary one into capacity increase. 

Such being the case, the sensor’s sensitivity may be determined as follows: 

 .
dU m

S
d k

 



 
   (10) 

The sensor’s static characteristics for sensitivity of 0.1 V·sq. s/m, which is typical for sensors of 

ADXL320 series by Analog Devices [7] is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Static characteristics of capacitance micromechanical accelerometer ADXL320. 

 

Expression (9) is the mathematical model of capacitance micromechanical accelerometer in the 

static mode of operation. However, since static mode of operation is rather an exclusive than a 

standard mode in the systems for technical inspection and diagnostics of low-speed electric machines 

and this sensor was designed to work in slightly other measuring systems, for which only the 

normalization of the dynamic component of the error was sufficient, in order to solve the task set one 

should obtain the mathematical model that would take into account dynamic specificities of operation 

of accelerometers of this type. 

As has been noted above, the change in capacity of capacitance micromechanical accelerometer is 

linearly connected with displacement of the sensor’s movable part. Since the sensor’s movable part is 

cushioned on stretches, in case of its destabilization own damped oscillations will arise, overlaying the 

forced displacement of equilibrium point. Id est: 

 ( ) ( ) ( ),own fX t X t X t   (11) 

where X(t) is the dependency of general displacement of the sensor’s movable part in relation to the 

stationary one; Xf(t) is the forced component of general displacement of the sensor’s movable part, 

which is determined by external influence (sensor’s acceleration); Xown(t) is own displacement of the 

sensor’s movable part in relation to the stationary one determined by own inertial movement. 

Since forced component of the general displacement of the sensor’s movable part is exclusively 

U (ε ), V
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determined by external influence, then in the absence (compensatedness) of gravitation component’s 

projection onto the measuring axis, which brings an additive error component into an output signal of 

capacitance micromechanical sensor [10], this may be determined as: 

 ( ) ( ).f

m
X t t

k
  (12) 

In its turn, own component of displacement of the sensor’s movable part is determined by presence 

of “elastic pendulum” mechanical system. So, under the action of constant і-agitation this may be 

described by expression [11]: 

 

2

2

( ) ( )
( ) 0,

own i own i

own i

d X t dX tP k
X t

dt m dt m
     (13) 

where P is the coefficient of resistance to displacement of the movable part; Xown i(t) is 

displacement of the sensor’s movable part in relation to equilibrium position from i-agitation. 

Then general displacement of the sensor’s movable part in relation to the stationary one under the 

action of constant і-agitation will be described by the following nonuniform differential of second 

order: 

 

2

2

( ) ( )
( ) 0.i i

i i

d X t dX tP k m
X t

dt m dt m k
      (14) 

Since in real-world sensor the inertial resistance coefficient is fairly minor, while stretches have 

quite a high stiffness [8], the following inequation will be implemented: 

 

2
4

0,
P k

m m

 
  

 
 (15) 

and solution of (14) in relation to Xi(t) will look as follows: 

 0

0 0( ) ( cos( ) sin( )) ,
t

i i i fX t e A t B t X
  

    (16) 

where Aі and Ві is the integration constant determined by initial conditions; Xf is the coordinate of 

equilibrium position under resultant of system of forces; ω0 is the cyclic frequency of own oscillations 

of the sensor’s movable part; ξ is the coefficient of proportionality between cyclic frequency of own 

oscillations and coefficient of their damping. That said: 

 0 ,
k

m
   (17) 

and, 

 ,
2

P

k m
 


 (18) 

Then own general displacement of the sensor’s movable part, based on its temporal implementation 

may approximately be found out as follows: 

 
1

( ) ( ),
n

d

i

X t X t i T


    (19) 

where Td is the system’s discretization interval. 

Expression (19) enables us to evaluate the experimental value of instantaneous displacement of the 

sensor’s movable part, with application of its interpretations for theoretical analysis of metrological 

characteristics of capacitance micromechanical sensor being quite complicated. Hence, to solve this 

problem it is advisable to use the transition characteristics of own displacement of the sensor’s 

movable part in relation to the stationary one h(t) depending on the sensor’s acceleration, which may 

quite easily be calculated based on its passport data. Such being the case, general displacement of the 

movable part may be determined as follows: 
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0

( )
( ) (0) ( ) ( ) .

t
d t

X t h t h t d
dt


       (20) 

We will obtain a typical transition characteristic of capacitance micromechanical accelerometer for 

sensor ADXL320 by Analog Devices. It follows from the analysis of its passport data that a typical 

throughput capacity of such an accelerometer type does not exceed 2.5 kHz [7]. Hence, the period of 

mechanical transition process, with regard to the sampling theorem, may be determined as follows: 

 
max

1 1
0,0002 ( ),

2 2 2500
ппt s

f
  


 (21) 

where fmax is the sensor’s throughput capacity. 

Considering that actual duration of mechanical transient process is linked to its time constant with 

the following relationship: 

 
0

1 1
40 ( ),

5
ппt mcs


    (22) 

we will obtain the value of the real part of characteristic equation root that describes the mechanical 

transient process of the accelerometer’s movable part:  

 

5
1

0

10
25000 ( ).

4
s    (23) 

By substituting (17) and (18) into (23), and having performed some mathematical transformations, 

we will obtain: 

 
125000 ( ).

2

P
s

m

  (24) 

Considering that the mass of the movable part of capacitance micromechanical accelerometer is 

somewhat 1.3 mcg [6, 12], the coefficient of resistance to the movable part’s displacement will have 

the value of somewhat 65·10
-3

 kg/s. That said, while the elasticity coefficient of elementary cell’s 

stretches has the value of some 1,300 N/m [12], then  

 
3

2

0 6

1,3 10
31,6 10 ( / ).

1,3 10
Rad s




  


 (25) 

In order to calculate (16), let us assume independent initial conditions and forced components that 

correspond to the input signal that varies according to the Heaviside function. Id est, the sensor’s 

movement starts at zero speed and zero time moment with the acceleration of 1 m/sq. s, has the 

direction contrary to positive displacement of the sensor’s movable part and continues up to final 

completion of mechanical transient process (has an indefinite duration) without changing the direction 

of movement. Such being the case, the exciting force to be applied to the sensor’s movable part may 

be determined according to (1): 

 
6 61,3 10 1 1,3 10 ( ).exF m a N         (26) 

That said, the new equilibrium position of the movable part may be calculated as follows: 

 

6

3

1,3 10
1 ( ).

1,3 10

ex
f

F
X nm

k


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
 (27) 

Since initial zero conditions are linked to the sensor’s previous mode of operation (its zero 

displacement and speed), then, according to the conditions set forth above: 

 
(0) 0,

(0) 0.

own i

own i

X








 (28) 

Such being the case, the speed of the sensor’s movable part will be described using the following 

expression: 
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 0 0

0 0 0 0 0 0

( )
( ) ( cos( ) sin( )) ( cos( ) sin( ))

own i t t

own i i i i i

dX t
t e B t A t e A t B t

dt

        
     (29) 

Having solved the system that includes (16) and (29) taking into account the initial conditions (29), 

in relation to integration constants for time moment t=0, we will obtain: 
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  


  
 (30) 

Having substituted the value of forced component of the sensor’s movable part displacement (27) 

and integration constants (30) into (16), we will obtain the transition characteristics of capacitance 

micromechanical sensor ADXL320. Graphic interpretation of this dynamic metrological characteristic 

is shown in Figure 3. 

0 1·10-4 2·10-4

X (t),

nm

t, s

1,5

1

0,5

 
Figure 3. Transient characteristic of capacitance micromechanical accelerometer ADXL320. 

 

Taking into account (9), we will obtain the voltage variation function at the sensor’s output: 

 ( ) ( ).U t X t     (31) 

Or having substituted into (31) dependency (8), which is normally used when establishing the 

equation of transformation of capacitance micromechanical accelerometer: 

  д d

m m m
U( t ) ( t ) ( t ) ( t ) ( t ),

k k k

     
   

     
     (32) 

where ε(t) is the acceleration value being measured; Δd(t) is the dynamic error that arises as a result 

of own displacement of the sensor’s movable part in relation to the stationary one, conditioned by its 

inertia. 

Expression (20) with due regard to (8) for a random temporal variation of measuring acceleration 

may be written as follows: 

 

0

( )
( ) (0) ( ) ( ) .

t
m d t

U t h t h t d
k dt

  
  
  

    
 

  (33) 

In its nature, dependency (33) is the mathematical model of capacitance micromechanical 

accelerometer that describes the dynamic mode of its operation. 

Having regard to (32) and (33), can be obtained the expression to evaluate the value of the absolute 

dynamic error of capacitance micromechanical accelerometer: 
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(34) 

Conclusions 

1. Obtained the mathematical model of capacitance micromechanical accelerometer in the static mode

of operation, which allows establishing the unambiguous connection between the value of acceleration

of the sensor’s housing and the value of its output voltage. It was established that this accelerometer

has constant sensitivity, so its static characteristics is linear.

2. Obtained the mathematical model of capacitance micromechanical accelerometer in the

dynamic mode of operation, which allows establishing the unambiguous connection between the value 

of acceleration of the sensor’s housing and the value of its output voltage. It was demonstrated that, in 

the dynamic mode of operation, this sensor is characterized by dynamic error conditioned by the 

movable part’s inertial properties and elasticity of stretches. 

3. Obtained the mathematical dependency of the absolute dynamic error of capacitance

micromechanical accelerometer, withdrawal of which from measurement results allows raising the 

precision of the said primary measuring transformer.  
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