
Characteristics of Categorized Latent Representations in 

Unsupervised Generative Learning 

S Dolgikh 

Department of Network Engineering, Solana Networks, 305 Moodie Dr., Ottawa, 

Canada 

 

E-mail: serged.7@gmail.com 

Abstract. In this work the effect of spontaneous categorization in the latent representations of 

unsupervised generative neural network models was investigated and verified in experiments 

with real world aerial image data. Distributions of images of several terrain classes were 

compared in the input data space and in the latent representations created by unsupervised 

autoencoder neural network models in the process of unsupervised training with minimization 

of generative error. The results demonstrated significantly improved correlation of density 

structures in the latent representations of generative models with the concept classes than in the 

unprocessed data, leading to the conclusion that unsupervised training with minimization of 

generative error combined with the constraint of strong redundancy reduction can lead to 

emergence of structured representations correlated with concepts with significant 

representation in the input data. The observed effect can be used for effective learning with 

minimal training data in the environments with severe deficit of labels. 

1. Introduction 
The study of unsupervised representations with the purpose to identify and extract informative 

parameters in general data has a long history. Unsupervised hierarchical representations created with 

models like Restricted Boltzmann Machines (RBM), Deep Belief Networks (DBN) different types of 

autoencoder models [1-3] proved to be effective in informative feature extraction and improving the 

accuracy of subsequent supervised training [4]. The deep relationship between training of intelligent 

models and the statistical principles such as minimization of free energy was studied in [5,6] leading 

to understanding that methods commonly used in training of artificial learning systems such as 

gradient descent in deep neural networks generally produce configurations compatible with the 

principles of minimization of free energy and variational Bayesian inference.  

Results pointing to spontaneous high-level concept sensitivity in unsupervised generative neural 

network models were obtained in a number of works. Google Lab team [7] observed an interesting 

effect of spontaneous formation of concept-sensitive neurons, activated by images in higher-level 

categories with a large, deep sparse autoencoder model trained in entirely unsupervised mode without 

any exposure to ground truth with very large arrays of images obtained from YouTube videos.  

Higher level concept-related structures were observed in the representations of deep autoencoder 

models with strong redundancy reduction with data representing raw Internet traffic in large public 

telecommunications networks in [8]. The results demonstrated that a density structure in the 

representations created by such models that emerges as a result of unsupervised training with 



minimization of generative error it can be used in the iterative approach to training of artificial 

learning systems that can offer higher flexibility and considerably lower ground truth requirements 

compared to common methods.  

Representations of deep variational autoencoder models were studied in [9], demonstrating 

effective disentangled representations with data of several different types in entirely unsupervised 

learning under the constraints of redundancy reduction. These and a number of further results [10] 

suggest that certain neural network models whether artificial or biological, in the process of 

unsupervised learning with an incentive to improve the quality of regeneration of the observable data 

may naturally structure the information by characteristics of similarity in the representations, thereby 

identifying certain natural or native concepts that perhaps can be correlated with higher-level concepts 

in the observable data. 

Based on this observation, the hypothesis investigated in this work is that the natural structure in 

representations created by certain unsupervised models in self-supervised learning with minimization 

of the generative error can be correlated with higher-level concepts in the input data, and that 

relationship can be used in developing approaches to flexible and iterative learning in the 

environments where prior domain knowledge is scarce or not available. The aim of this work was to 

validate the results on unsupervised categorization obtained in earlier studies [8] by answering the 

essential questions: 

1. Do the unsupervised representations obtained with generative unsupervised training have 

better concept-clustering structure compared to the original data? 

2. Is the association between most represented concepts in the original data and the density 

structure in the representation stable and significant, with respect to change of the model and 

data? 

To address these questions, a number of experiments were designed and executed with a dataset of 

genuine images, as described in the following sections. 

2. Materials and Methods 

Among different types of generative models, neural networks have a high potential due to their 

versatility and universal approximation power that makes them suitable for data of virtually unlimited 

types and complexity [11] as was demonstrated in a number of results including cited above. 

The models used in this work produced two stages of latent representations of unprocessed aerial 

image data. The encoder of the first stage was a convolutional-pooling autoencoder that produced a 

numerical representation of dimension 576 from color images with dimension (64, 64). The resulting 

representation was used as input to the second stage autoencoder with physical dimensionality 

reduction to three dimensions, based on principal component analysis of the first stage representation. 

For a detailed description of the model and the dataset used in the study refer to [12]. 

 
Figure 1. Two stage convolutional autoencoder model 



The dataset consisted of real, unprocessed raw aerial images manually labeled with terrain classes. In 

the experiments, six out of ten classes in the dataset were used in the experiments in unsupervised 

learning and self-learning; however, the rest of data was still used as uncategorized background to 

verify the resolution of concept classifiers. The labeled classes used in self-learning were the 

following: fields; forest; water; roads; large construction structures and vehicles (classes 1 – 6, Table 

2). 

In the process of unsupervised training the models have achieved significant improvement in all 

metrics such as: cost function, cross-categorical accuracy and a number of post-training metrics of 

generative quality (see Section 3.3 for details) indicating that learning models have indeed learned and 

retained some essential information about the input distributions despite strong compression in the 

latent representation.  

An important aspect in investigating data distributions in the input data and latent representation 

was identification of data density structure. To this end, density clusters were calculated with 

MeanShift density clustering method [13] that does not depend on labeled data and can be used in an 

entirely unsupervised mode; a comparison of the resulting cluster structure was then performed 

between the input distribution and the latent representation.  

To address the objectives of the study, distribution parameters were compared for distributions of 

concept data samples in the input space and in the latent representation of pre-trained unsupervised 

models.  

The association of higher-level concepts and the obtained density structure was tested by applying 

landscape learning approach introduced in [8], with the selected concepts in the input data and 

representation. Given that the method uses extremely small positive sample of the concept, the results 

of the learning experiments show how closely the density structure is related to the concepts of 

interest. 

In conclusion, to demonstrate that non-trivial learning is taking place with the generative models 

used in this work, a random dataset was used to compare the outcomes of training and learning 

between the genuine and randomly generated data. 

3. Results 

3.1. Unsupervised Categorization 

In this section we compare the characteristics of concept distributions in the original input data space 

with the latent representation created by trained generative models. Some measurements in this section 

were made with unsupervised methods that required no labeled data. The measured properties were: 

1. Structure, the total number of clusters identified with density clustering; 

2. Concentration, the fraction of the sample that is found in large clusters with the size over 2% of the 

dataset. 

3. Characteristic size and density of the concept clusters; relative to the overall dimension of the 

dataset and average density, respectively. 

4. Separation, a measure of overlapping of concept distributions calculated as the number of concepts 

with representation over 30% of the concept sample in the same unsupervised density cluster. The 

results are presented in Table 1. 

Table 1. Distribution parameters in the latent representation 

Sample Dimensionality Structure Concentration Average concept 

size / density 

Separation 

Input dataset  576 210 57% 0.44 / 65 3-6 

Representation 3 46 73% 0.18 / 340* 1-2* 

* Compact concept clusters 



In the latent representation, two essentially different types of concept distributions were observed. One 

was compact and dense, as illustrated in Figure 2, referred to as a “compact cluster”. A different type 

of concept distributions was observed for classes with smaller relative area in the image, such as 

classes 5 - 7 (construction structures, vehicles, etc.). It is believed that such a difference can be caused 

by the structure of the model for example, size and depth. These questions will be explored in more 

detail in another work. 

Another interesting conclusion that can be drawn from the analysis of compact concept 

distributions is the connected and smooth shape of the concept manifolds in the latent representation 

space. It is a clear confirmation of the manifold assumption [14] that is used widely in unsupervised 

and semi-supervised machine learning. 

 

Figure 2. Compact concept distribution in the latent representation 

Overall, as can be concluded from the results of this section, latent representations of generative 

models in the experiments demonstrated more structured and concentrated character than the 

unprocessed samples in the input data space. 

3.2. Minimal Sample Learning 

In this section, the method of signal, or minimal sample learning with very small sets of labeled data 

[8] was applied, comparatively, in the original data and unsupervised representations of generative 

neural network models.  

The method is based on generating samples for training of concept classifiers from the density 

distribution in the unsupervised latent representation following unsupervised training and for that 

reason, comparing classification outcomes in these cases allows to estimate categorization capacity of 

the models, that is, how effectively they were able to associate similar data to compact regions in the 

latent representation space for more effective learning, and how closely these unsupervised structures 

reflected distributions of known higher-level concepts. 

The method of minimal sample learning is based on a direct association between training of 

concept classifiers and the unsupervised density structure or landscape, of native density clusters. For 

this reason, the success or otherwise, of the classifier to learn concepts with a minimal truth sample, 

that can be as small as a single positive sample of the concept being learned, allows to draw a 

conclusion on how closely the unsupervised density structure obtained in unsupervised generative 

learning was correlated with the higher-level concepts in the input data. 

In the experiments in this section, classification results of concept classifiers trained with minimal 

concept samples were measured in 100 tests with randomly selected 100 samples of in- and out-of-

concept classes, 20,000 predictions in total. Signal accuracy of classifiers trained with a minimal 



sample was measured as recall and false positive rate representing errors of two types, and the 

combined accuracy measure taking into account errors of both types (F1-score).  

The null hypothesis in this experiment would be represented by one of the following outcomes:  

1) A failure of the representation classifier to learn, i.e. a strongly biased prediction to acceptance, or 

rejection;  

2) The accuracy of the representation classifier on the level of a random prediction i.e. for a binary 

classifier, (½, ½) or F1-score of 0.5. 

whereas successful learning of representation classifiers for different concepts would support the 

hypothesis of a correlation between unsupervised landscape in the latent representation that emerges in 

unsupervised generative training, and higher-level concepts in the input data. The results of these 

experiments representing the accuracy of concept classifiers trained with 1-3 positive samples of 

classes in the original data space (middle column) and unsupervised representation (left column) are 

given in Table 2. 

Table 2. Self-learning accuracy in the input vs latent space 

Class Description Signal Accuracy, 

Representation (mean) 

Signal Accuracy, 

Input (mean) 

Signal Accuracy, 

Representation (best) 

Class 1  fields 0.70 / 0.33 0.95 / 0.76 0.77 / 0.34 

Class 2 forest 0.87 / 0.38 1.00 / 0.75 0.89 / 0.32 

Class 3 water 0.93 / 0.24 1.00 / 0.75 0.95 / 0.25 

Class 4 roads 0.52 / 0.42 1.00 / 0.76 0.51 / 0.38 

Class 5 construction 0.80 / 0.42 1.00 / 0.76 0.86 / 0.39 

Class 6  vehicles 0.65 / 0.36 1.00 / 0.78 0.71 / 0.38 

As can be seen from these results, while classifiers in the representation space for all concepts were 

able to achieve learning accuracy better, and in most cases significantly better than random, those in 

the input space were not able to converge to a meaningful resolution and remained nearly 100% biased 

for acceptance and in some recorded cases, for rejection. In over 100 tests across most concepts, the 

null hypothesis has not been observed, and classifiers trained with unsupervised density structure in 

the latent representation obtained in unsupervised generative learning were able to predict the concept 

successfully, with better than random accuracy. 

The results in this section indicate that the density structure in the latent representations that 

emerges in unsupervised generative learning appears to be essential for successful learning of the 

concept with minimal data that can only be the case if the emergent density structure is correlated with 

the common concepts in the input data. It is worth noting that the accuracy results in the input space 

were observed in the entire spectrum of the bandwidth parameter of the density clustering method as 

confirmed by a grid search in the entire meaningful range of the parameter, and therefore cannot be 

attributed to specific choice of the parameter. 

3.3. A Negative Case: Learning with Random Data 

In the previous sections generative unsupervised models have shown interesting results in 

unsupervised concept learning with real-world image data. But a question can be raised, do these 

results show a genuine effect of unsupervised learning or perhaps, an artifact of the particular selection 

of the model and training process, for example, models overfitting data in training?  

To address this question, a negative case experiment was designed based on the observation that in 

the latter case one should observe similar results with training of different datasets including ones with 

random data, while in the former, only genuine data would produce meaningful results. To this end, a 

random data array with the same size and parameter range as the Stage 1 encoded representation 

(Figure 1) was generated and used to train the second stage encoder with dimensionality reduction.  

The comparative results of training and generative metrics for the genuine and random datasets are 

shown in Table 3. In addition to commonly used training metrics such as Mean Squared Error (MSE) 



and cross-categorical accuracy, two metrics of generative ability of trained models were used: 

correlation coefficient of the input sample and its image generated by the model (in the input data 

space); and a ratio of the average norm of the generative error by the norm of the input sample. The 

value of the correlation coefficient that is close to 1 indicates a high degree of correlation, whereas a 

low ratio of generative error to the input shows that the model has learned to regenerate the input 

distribution from the latent representation successfully. 

Table 3. Training and generative performance, genuine vs. random data 

Dataset Description Training metrics: MSE, 

cross-categorical 

accuracy 

Correlation, input / 

generated output 

Norm ratio, 

generative error to 

input 

Genuine 

image data 

Phase 1 encoding of 

real images, 576 
up to x100 improvement 0.8 – 0.9 0.1 – 0.2 

Random data 
Randomly generated 

data array, 576 
not changed significantly 0.1 – 0.15 ~ 0.5 

The analysis of training and generative results for genuine and random datasets in Table 3 shows that 

while unsupervised training was successful for genuine image data, it was not so with the random 

dataset. Unlike models trained with genuine image data where a range of generative performance was 

observed, none of the models trained with the random dataset showed successful ability to regenerate 

input samples.  

In our view, the results of this experiment clearly demonstrated that not every data can be 

categorized successfully via generative self-learning and the effect of concept-correlated 

representations observed in the previous sections is likely to be genuine. 

4. Discussion 

The objective of this study was to address common questions about unsupervised concept learning, 

such as generality, effectiveness and reproducibility of results. While strong support for correlation 

between unsupervised structure in the representations and concepts in the observable data was 

demonstrated in several results [7-10], questions about generality of these results were raised. 

By using a model of lower complexity in this work we first attempted to address the problem of 

generality. Indeed, observation of the effect of unsupervised categorization with clear correlation with 

higher-level concepts in the real-world image data shows that specific and complex design, while very 

likely, essential for superior performance, is not the cause of the observed effect. 

Secondly, it was demonstrated (Section 3.1) that strong redundancy reduction combined with 

generative learning leads to emergence of a structured latent representation with a strong correlation to 

higher-level concepts. All categorization parameters for concepts of the compact type were 

significantly better than in the input data, despite strong (almost 200-fold) dimensionality reduction. 

This conclusion agrees with the earlier results on unsupervised categorization and strengthens the 

argument for a general nature of this effect. 

The results of minimal sample learning in Section 3.2 support this conclusion as well. Clearly, if 

unsupervised structure in compressed latent representations had no significant correlation with higher-

level concepts, there would be no reason to expect any improvement in classification performance 

comparatively to classifiers trained with raw input data. Yet, as the results show, for most concepts, 

classifiers trained in the latent representation were successful in learning with minimal samples of 

concept data. 

The experimental results presented in Sections 3.1 - 3.3 provide new convincing empirical 

arguments for the effect of spontaneous categorization in unsupervised representations of models with 

self-encoding and regeneration. Theoretical approaches to explanation of this effect were outlined in 

[5-6]. 



In our view the presented results answer the questions and achieve the objectives set out for this 

work, demonstrating consistent and clear effect of correlation between unsupervised the structure in 

the latent representations of generative neural network models that emerges in unsupervised generative 

self-learning and common higher-level concepts in the input data. 

Conclusion 

The methods of unsupervised learning are receiving more attention and with increasing number of 

applications in the problems and environments where application of conventional supervised methods 

is limited for example, due absence or deficit of labeled data due to significantly reduced requirements 

for labeled data needed for successful learning. For example, in supervised machine learning the 

performance of the model in real world very often directly relates to the accuracy and size of labeled 

training data. Producing such data in some problems is associated with significant challenges as 

obtaining large amounts of accurate truth labeled samples may be expensive and/or technically 

challenging.  

Unsupervised models bypass this challenge by identifying principal patterns in the data without the 

need for labeled samples, via constraints imposed on the model in training, such as generative quality 

and redundancy reduction. This ability can serve as a foundation for more flexible environment-driven 

learning with close resemblance to learning process of biologic systems and humans [15].  

Thus, generality and flexibility allows the models based on the principles of generative 

unsupervised learning to be applied in a broad range of fields and applications, that deal with large 

amounts of unlabeled data such as navigation, different types and aspects of flight information, 

communications, positioning and others providing an effective and intelligent approach and a set of 

tools in complex data analysis with effective applications in multiple technology domains including 

public aviation and aerospace. 
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