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Abstract. Various special cases of estimation of unknown parameters of diffusion processes 

are considered. Three different martingal estimating functions based on discrete-time 

observations of a diffusion process are considered. One is the discretized continuous-time score 

function adjusted by its compensator. The other two emerge naturally if optimality properties 

of the first are considered. In addition to the general normal correlation theorem in the discrete 

case, an overview of research on this topic is given. The following approaches are considered: 

martingale parameter estimation for discretly observed diffusion processes; explicit expression 

for the parameter of the diffusion process; optimal linear non-stationary filtering (Kalman-

Bucy method) 

1. Introduction 

In the study of physical phenomena, one often deals with case-dependent quantities that change over 

time. A probabilistic process is used to describe such phenomena. If we have a main probability space; 

T - the set of real numbers, then the probabilistic process is called a random variable   ( ), depending 

on t   . Diffusion processes began to be considered as early as the 19th century. 

Historically, standard Brownian motion was first studied - the random movement of pollen 

particles suspended in water. The exact definition of Brownian motion involves the use of a measure 

in the space of trajectories, and only then the Brownian motion received a solid mathematical 

foundation. In 1923, N. Wiener introduced the concept of a process that now bears his name. 

The Wiener process describes the chaotic motion of a microscopic particle in a medium (liquid or 

gas) under the influence of collisions with molecules of this medium. There is also a model of thermal 

noise in the conductor due to the chaotic movement of electric charge carriers. 

The parameters of diffusion processes have a significant effect on their properties. The work is 

devoted to the consideration of some examples of estimating the parameters of diffusion processes. 

2. Martingale parameter estimation for discretly observed diffusion processes 

Considered one-dimensional diffusion processes defined by the following class of stochastic 

differential equations: 
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Here, the drift and the diffusion coefficient do not depend on the time t; the function σ is assumed to 

be positive; the functions b and σ are supposed to be known and twice continuously differentiable with 

respect to both arguments; assume that (1) has a unique solution for all Θ in some open subset of the 

real time. The parameter Θ is to be estimated from discrete equidistant observations of 

{  +               Filtration is defined as      (        )          
Parameter estimation, concerning diffusion process, based on the likelihood function L. The likelihood 

function for discrete observations is a product of transition densities, so we are looking for good 

approximation for such function. Approximation of continuous-time likelihood function is considered 

by replacing Lebesque intergrals and Ito integrals by Rieman-Ito sums. The estimator   ̅obtained in 

this way can be strongly biased, therefore consider martingal estimating function from    ̅̅ ̅ Two 

functions are considered as such an assessment for Θ [1]: 
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A dot denotes differentiation with respect to the parameter Θ.  

  
 ( ) is optimal, that is   

 ( ) is in some sense closest to the score function based on the usually 

unknown exact likelihood function within the class functions: 
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where        is      - measurable and continuously differentiable function of Θ,         The 

optimal estimating function is found within the class given by (4) in the sense of giving the smallest 

asymptotic confidence interval around Θ and smallest asymptotic dispersion. 

That two martingale estimating functions (2,3) result in consistent and asymptotically normally 

distributed estimators when the underlying diffusion is ergodic. 

A third estimating function which is denoted by   ( ), given by 
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where the prime denotes differentiation with respect to x.    

  ( ) is based on the expansion for small Δ: 
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So, there are three different zero-mean    - martingale estimating functions: one of them,   , is 

optimal in the class (4) and other two,  ̃ and   , are the first- and second-order approximations in Δ 

of      
To find the parameter Θ estimate, it is necessary to solve the equations:   ( )     
Since in many cases it is difficult to find the roots of     good approximations to    are important. 

So, using this approach, an estimate of the autocorrelation parameter Θ was obtained for reciprocal 

diffusion process [2]: 
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where  Θ   , α          - Wiener process. It is denoted : 

 ( )     (  
 

   
)   ( )   √

  

   
   

Differential equation of this type is one of the most popular short term interest rate models. The 

diffusion process    *  , t   + that solves this equation is ergodic with unvariant reciprocal gamma 

probability density function    ( ): 
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Then the estimate for Θ takes the form :  ̿ ( )  ∑
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Estimation function is a zero mean martingal with respect to filtration   . 

The corresponding estimation equation :  ̿ ( )    provided an estimator  ̃ of an unknown 

autocorrelation parameter Θ that is under some specific conditions P-consistent and asymptotically 

normal. 

Estimator  ̃ of the autocorrelation parameter Θ is derived: 
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where   ̃ ( ) is Bessel polynomial[3-5]. 

3. Explicit expression for the parameter of the diffusion process 

In some cases, it is possible to obtain an explicit expression for the parameter of the diffusion process. 

Consider two cases of exact estimation of the parameter of the diffusion process [4]. 

Let be   (     )       has a differential: 
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where  Θ -    is measurable normal random value,  (   ), which does not depend from Wiener 

process    (     ). Then  . |  
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 and process is diffusion process with differential: 
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This representation serves as a special case of solving the optimal filtration equation, whose solution is 

based on the following statement. 

Let be    ( ) - random value,       and the observed process   (  )        allows 

differential: 
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where coefficients satisfy some conditions and conditional distribution  (    )     ( ) is 

Gaussian. Then  
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In this case, an explicit expression  
     

    
  was obtained for the unknown parameter Θ of the 

diffusion process (7). 

Let's consider another case. Let there be a pair of random processes (   )  (  ,  ),      , 

where the unobservable component Θ is a Markov process with a finite or countable set of states, and 

the observed process is represented as a stochastic differential: 

      (    )     ( )                                

where    is Wiener process[6-8]. 

If a    (     )       - real Markov process with values in a countable set   *     + , 
continuous on the right;    - standard Wiener process, independent of Θ,   -    - measurable random 

variable, independent of Θ. 

The implementation   
  *      +  of the observed process ξ is known up to a point in time   

   . The construction of estimates for the quantity    on   
  is the problem of filtering the 

unobservable process Θ. A convenient estimation characteristic for Θ is the posterior probability[9-

11]: 
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With the help   ( )     can be obtained a variety of estimates of the value   . In particular, the 

conditional mathematical expectation .  |  
 
/  ∑       ( ) , which is an estimate that is optimal 

in the mean square sense. The estimate   ( ) obtained from the condition: 
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- the estimate that maximizes the posterior probability   ( )  

If a random variable    ( )  takes two values β and α with probabilities   and (   ), 
respectively. A special case of (7) is random process         with 

                     

Then the posterior probability π( )   .   |  
 
/  satisfies the equation: 
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If is the Radon-Nikodym density:  ( )  
   

   
(   )  of the measure    corresponding to the process 

ξ  with     in the measure     corresponding to the process ξ with    , then from the Bayes 

formula at     it follows: 
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In this case  ( )      *   
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The posterior probability  ( )  is a sufficient statistic in the problem of distinguishing between two 

simple hypotheses -         and          

4. Optimal linear non-stationary filtering (Kalman-Bucy method) 

On a probability space, a two-dimensional Gaussian random process (     )       is considered 

that satisfies the stochastic differential equations[12]: 
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where   ,    are two independent Wiener processes,       -    are measurable. 

The process           is inaccessible to observation, only values           are observed 

that carry incomplete (due to the presence of a multiplier  ( ) and interference  ( )   (t)) 

information about the values   . It is necessary at every moment in time to evaluate (filter) the values 

   by implementation   
  *        +  

The optimal estimator for   , that is, the best in the root-mean-square sense, coincides with the 

conditional mathematical expectation      ( )   The estimation (filtering) error is denoted as: 
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The method used by Kalman and Bucy to find    and     made it possible to obtain for these 

quantities a closed system of recurrent equations. 

The process (     )       considered by Kalman and Bucy is Gaussian. As a consequence, 

the optimal estimate    turns out to be linear. However, in the conditionally Gaussian case, for    can 

also be obtained a closed system of equations, although the estimate    will be, in general, nonlinear. 

That is, under certain conditions on the functions  ( )  ( )  ( )  ( )  in (8,9), the conditional 

mathematical expectation    and root-mean-square filtering error     satisfy the following system of 

equations: 
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The system of equations has a unique continuous solution (for    - in the class of non-negative 

functions). 

5. Normal correlation theorem in the discrete case 

The main results on estimating the parameters of conditionally Gaussian processes are based on the 

normal correlation theorem and the concept of pseudoinverse matrices [4]. 

An matrix   (order:     m) is called pseudoinverse to the non-degenerated matrix        if the 

following conditions are satisfied:                     where U and V – some matrices. 

Matrix   rows and columns serve as linear combinations of matrix   rows and columns. 



 

 

 

 

 

 

The normal correlation theorem states that for a Gaussian vector (   )  (,       - ,       -) 
with                     (   )        (   )        (   ) , then 

conditional mathematical expectation  (   ) and conditional covariance: 
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As a consequence, we obtain, in general, the well-known statement about the optimal estimation of 

the parameter Θ. If             then 
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Introducing the correlation coefficient:   
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formulas get the known form:  
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Also, this fundamental result (10,11) leads to an interesting consequence: 

Let be            , ξ            , where        - independent Gaussian values,        
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These statements, based on the theorem of normal correlation in the discrete case, have become 

widespread in statistical studies of diffusion processes. 

 

Conclusions 

Diffusion processes are widely used in technical applications, economics, and finance. Estimation of 

the unknown parameters of diffusion processes is associated with a number of difficulties, which are 

not an easy task to overcome. The paper discusses the main approaches to solving this issue. For this, 

statistical estimates, equations of optimal linear and nonlinear filtering are used. These approaches are 

illustrated with examples. 
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