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Calculation apparatus for modeling radio engineering and electrical 
engineering objects 

The proposed approach makes it possible to unambiguously determine the location of 
zero field points at a certain distance from the source (for a quadrupole source and 
zero field lines, for an octupole source). The results of modeling and its verification by 
field measurements for the most common four-pole machines (quadrupole source) are 
presented. 

Introduction. Radio engineering and electrical objects are widely used on the 
territory of airports. These are electric generators, electric motors of various purposes 
and power. Determining the spatial distributions of their magnetic fields makes it 
possible to assess the possible impact on people, energy losses, etc. At the stages of 
designing the placement of equipment in the airport premises such an assessment is 
possible by modeling the distribution of fields. A feature of modeling the propagation 
of ultra-low magnetic fields (power frequencies, its harmonics and interharmonics) is 
the need to ensure the required accuracy of the final result. In industrial premises with 
limited space, it is necessary to accurately determine the zones of safe stay of people. 
The required accuracy of modeling can be ensured by taking into account a sufficient 
number of spatial harmonics of the magnetic field. 

Analysis of recent research and publications. The modeling the propagation 
of magnetic fields in radio technical and electrical equipment aimed at reducing 
energy losses, concerns the distribution of the magnetic field inside the device and is 
performed using the Comsol package [1, 2]. Studies on taking into account the spatial 
harmonics of the magnetic field of electrical machines [3] have shown that this 
approach is promising. In most cases, models of the most common dipole-type field 
sources are considered [4, 5]. But most electrical and radio technical objects are 
sources of quadrupole and even octupole magnetic fields, but the field configurations 
in it are sketchy [6]. But any source of a magnetic field can be considered as a 
combination of magnetic dipoles with different magnetic moments [7]. The works [8, 
9] used the synthesis of the magnetic field of technical objects based on spatial
harmonics. In this case, it is necessary to take into account the relative sizes of the
sources in order to determine the required number of spatial harmonics.

Presentation of the main material. In real conditions, in addition to the 
industrial frequency, there are harmonics and its harmonics (third and multiples of 
three). In electrical machines of any design, harmonics can always be distinguished in 
accordance with the number of poles of the machine: dipole, quadrupole, octupole 
(n=1, 2, 3). An accurate determination of changes in the level of the magnetic field 
with distance is expedient using the Gauss equation for a scalar magnetic potential. In 
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spherical coordinates R, θ, φ, the source magnetic field distribution function has the 
form:   
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де R0 – the radius of the sphere of the determination the potential, аnm, bnm – 

constant coefficients cosm
nP ϕ  –Legendre polynomial. 

In doing so, R ≥ R0, the coordinates a, b are the amplitudes of the spherical 
harmonics of the magnetic field strength in the sphere R0. The strength (induction) of 
the magnetic field is determined from the above equation based on the fundamental 
relationships:    H=-gradUМ,      B=µ0H 
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The above relations indicate that the magnetic field strength decreases with 

distance, and this decrease is proportional to the increase in the harmonic index n. 
Thus, based on the tasks set, it is advisable to consider the first spherical harmonics, 
which correspond to the slightest decrease in the level of the magnetic field with 
distance. These are the dipole harmonic (n=1) and the quadrupole harmonic (n=2). 
The radial component of the magnetic field is determined from the above relations by 
a standard procedure using the Legendre polynomials in the usual form. 
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The magnetic field around a four-pole electric machine is characterized by the 
sum of harmonics ( 1)=n

rH  and )n(
rH 2= .   In general: 
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Thus, the dependence of the field strength on the distance for different angles 
of spherical coordinates will differ significantly: for 
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in the direction φ=0 dipole and quadrupole harmonics are added, and in the direction 
φ=π – are subtracted. The result obtained is important from the point of view of 
ensuring the electromagnetic safety of personnel located near power generators. That 
is for at φ=π there is a point where H=0, that is, within this angle, the total levels of 
the fields are insignificant. Considering the change in the field strength by ϕ=0 and 
ϕ=π, assuming R0=1, we obtain the relation:   
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The result obtained indicates that, under the condition ϕ=π, as a result of 
different rates of decrease in the strength of the dipole and quadrupole components of 
the magnetic field with distance, there is a point where H = 0. Modeling of the spatial 
distribution the magnetic field a four-pole electric machine using the Matlab package 
for ϕ=π, R=2. For a dipole-octupole field, its zero value can be on closed lines. In the 
plane θ=π/2, there is only one component of the magnetic field H0 with exponents 
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That is, in the plane θ in the angle 0<φ<2π along the entire circle H0=0 on a 
distance: 30
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allows you to calculate the field strength at any point around the electric machine and 
indicate them graphically. Minimizing the number of harmonics taken into account 
reduces the volume of calculations and simplifies the field propagation modeling 
processes. In the presence of a dipole harmonic, the maximum value of the field 
strength Hφ is achieved at φ=0, θ=π/2: 
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As shown in [7], the relative level of higher spatial harmonics: 
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That is, it is possible to calculate the relative level of higher spatial harmonics 
for any ratios R0/R (Table 1). 

Table 1 
The relative level of the higher spatial harmonics of the magnetic field K for 

different relative distances from the electric machine 
R0/R K 

n=2 n=3 n=4 n=5 n=6 n=7 n=8 
2/3 3,33 2,22 1,48 0,99 0,66 0,44 0,29 
1/2 2,50 1,25 0,63 0,31 0,16 0,08 0,04 
1/3 1,67 0,56 0,19 0,06 0,02 - - 
1/4 1,25 0,31 0,08 0,02 - - - 
1/5 1,00 0,20 0,04 - - - - 

As can be seen from the table, for smaller relative dimensions of the electric 
machine a smaller number of spatial harmonics should be taken into account. For 
example, for R0/R=2/3 even the eighth harmonic gives about 30% of the first, and for 
the second R0/R=1/5 the fifth harmonic becomes insignificant. 

This makes it possible to rationalize the processes of modeling the spatial 
propagation of magnetic fields of electrical machines with the necessary accuracy 
(permissible error) for determining the field strengths at any point. 
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Conclusions. It is shown that in order to ensure the required accuracy when 
modeling the field propagation (permissible error), one should take into account the 
relative dimensions the electric machine (the ratio of the conditional radius of the 
machine to the distance of determining the magnetic field strength). At smaller 
relative sizes, a smaller number of spatial harmonics is taken into account. This 
simplifies the process of modeling the propagation the field depending on its 
objectives. 
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