Остання редакція: 2022-09-26
Аннотація
Ключові файли
Посилання
1. Acha B, Serrano C, Acha JI, Roa LM. Segmentation and classification of burn images by color and texture information. J Biomed Opt. 2005;10:034014. doi: 10.1117/1.1921227.
2. Yadav DP, Sharma A, Singh M, Goyal A. Feature extraction based machine learning for human burn diagnosis from burn images. IEEE J Transl Eng Heal Med. 2019;7:1800507. doi: 10.1109/JTEHM.2019.2923628.
3. Tran H, Le T, Le T, Nguyen T. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series. Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 165, Germany: Springer Verlag; 2016, p. 233–42. doi:10.1007/978-3-319-29236-6_23.
4. Tran H, Hoang Le T, Nguyen TT. The degree of skin Burns images recognition using convolutional neural network. Indian J Sci Technol. 2016;9:1. doi: 10.17485/ijst/2016/v9i45/106772.
5. Cirillo MD, Mirdell R, Sjöberg F, Pham TD. Tensor decomposition for colour image segmentation of burn wounds. Sci Rep. 2019;9:1–13. doi: 10.1038/s41598-019-39782-2.
6. Serrano C, Acha B, Gómez-Cía T, Acha JI, Roa LM. A computer assisted diagnosis tool for the classification of burns by depth of injury. Burns. 2005;31:275–81. doi: 10.1016/j.burns.2004.11.019.
7. King DR, Li W, Squiers JJ, Mohan R, Sellke E, Mo W, et al. Surgical wound debridement sequentially characterized in a porcine burn model with multispectral imaging. Burns. 2015;41:1478–87. doi: 10.1016/j.burns.2015.05.009.
8. Francisco Serra E Moura, Kavit Amin, Chidi Ekwobi, Artificial intelligence in the management and treatment of burns: a systematic review, Burns & Trauma, Volume 9, 2021, tkab022, https://doi.org/10.1093/burnst/tkab022.
9. Li W, Mo W, Zhang X, Squiers JJ, Lu Y, Sellke EW, et al. Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging. J Biomed Opt. 2015;20:121305. doi: 10.1117/1.jbo.20.12.121305.
10. Heredia-Juesas J, Thatcher JE, Lu Y, Squiers JJ, King D, Fan W, et al. Burn-injured tissue detection for debridement surgery through the combination of non-invasive optical imaging techniques. Biomed Opt Express. 2018;9:1809. doi: 10.1364/boe.9.001809.
11. Heredia-Juesas J, Graham K, Thatcher JE, Fan W, Dimaio JM, Martinez-Lorenzo JA. Merging of Classifiers for Enhancing Viable vs Non-Viable Tissue Discrimination on Human Injuries. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2018-July, Honolulu, HI, USA: IEEE; 2018;9:726. doi:10.1109/EMBC.2018.8512378.
12. Palagin O.V., Qasem A.M., Tkachenko O.M., Kasim M.M. Information support for software projects of multidomain geoinformation systems using ontologies, agent-based and cals technologies. Proceedings ІX annual scientific conference «Information technology and automation – 2016» (Odessa, October 11-14, 2016). Одеса: ОНАХТ, 2016. С. 22–24.