Конференції Національного Авіаційного Університету, AVIATION IN THE XXI-ST CENTURY 2020

Розмір шрифту: 
Characteristics of Categorized Latent Representations in Unsupervised Generative Learning
Serge Dolgikh

Остання редакція: 2021-04-04

Ключові файли

artificial intelligence; unsupervised learning; self-learning systems


1. Hinton G., Osindero S., Teh Y.W., A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527 – 1554 (2006). 2. Fischer A., Igel C., Training restricted Boltzmann machines: an introduction. Pattern Recognition 47, 25 – 39 (2014). 3. Bengio Y., Learning deep architectures for AI. Foundations and Trends in Machine Learning 2(1), 1 – 127 (2009). 4. Coates A.; Lee H.; Ng A.Y et al, An analysis of single-layer networks in unsupervised feature learning. International Conference on AI and Statistics (AISTATS) (2011). 5. Friston K., A free energy principle for biological systems. Entropy 14 2100–2121 (2012). 6. Tishby N., Pereira F.C., Bialek W., The information bottleneck method,  arXiv:physics/0004057 (2000). 7. Le Q. V., Ransato M. A., Monga R. et al, Building high-level features using large scale unsupervised learning arxXiv:1112.6209 (2012). 8. Dolgikh S., Categorized representations and general learning. In: 10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions – ICSCCW-2019 1095, 93-100 (2019).  9. Higgins, I., Matthey, L., Glorot, X. et al, Early visual concept learning with unsupervised deep learning. arXiv:1606.05579 (2016). 10. Shi, J., Xu, J., Yao, Y., and Xu, B., Concept learning through deep reinforcement learning with memory-augmented neural networks. Neural Networks 110, 47–54 (2019). 11. Xu, C., Guan, Z., Zhao, W., Niu et al, Deep multi-view concept learning, in IJCAI (Stockholm), 2898–2904 (2018). 12. Hornik K., Stinchcombe M., White H., Multilayer feedforward neural networks are universal approximators. Neural Networks 2(5), 359-366 (1989). 13. Prystavka P., Cholyshkina O., Dolgikh S., Karpenko D., Automated object recognition system based on aerial photography. In: 10th International Conference on Advanced Computer Information Technologies – ACIT’2020 (to appear) (2020). 14. Fukunaga K., Hostetler L.D., The estimation of the gradient of a density function, with  Applications in pattern recognition. IEEE Transactions on Information Theory. 21(1), 32 – 40 (1975).
15. Zhou X., Belkin M., Semi-supervised learning, In: Academic Press Library in Signal  Processing, Elsevier. 1, 1239 – 1269 (2014). 16. Dolgikh S., Why good generative models categorize. International Journal of Modern Education and Computer Science (Hong Kong) (in print) (2020). 17. Hassabis, D., Kumaran, D., Summerfield C. et al., Neuroscience inspired Artificial Intelligence. Neuron 95(2) 245–258 (2017).