Конференції Національного Авіаційного Університету, AVIATION IN THE XXI-ST CENTURY 2020

Розмір шрифту: 
Quasi-linear viscoelastic model for randomly reinforced magnetorheological elastomers
Boris P. Maslov, Tetiana B. Maslova

Остання редакція: 2021-04-04


Combined numerical and analytical determination of overall dynamic response and creep behavior of random multi-component reinforced elastomers are proposed. Magnetorheological elastomers are considered here as an example of smart materials, composed of micro-sized magnetic carbonyl iron particles dispersed in a non-magnetic silicone rubber. The viscoelastic behavior of rubber matrix is described by Rabotnov’s type quasi-linear law. The random structure of composite analyzed, so constitutive equations for statistical fluctuations of first and second order displacement, nonlinear Green deformation, nominal or Cauchy stress in the representative volume are used. Upon application of the integral Laplace-Carson and Fourier transforms, the boundary value problem for the local stress and strain fields becomes similar to a nonlinear elastic one. The volume concentration of carbonyl iron remains unchanged after transforming from the time domain to the Laplace-Carson domain, as in the case of non-aged materials. The explicit determination of the inverse transform is not straightforward, and numerical methods are required. Efficient algorithms for numerically evaluating the inverse Laplace transform we use here from NAG-Fortran library. Numerical experiments by finite elements modelling were carried out with the aim of choosing the optimal structure and composition of multi-component magnetorheological elastomer materials.

Ключові файли

random viscoelastic composite; dynamic properties; elastomer


  1. Aboudi J, Arnold S and Bednarcyk B 2013 Micromechanics of Composite Materials (Elsevier) p 1011

  2. Besson J, Cailletaud G, Chaboche J, Forest S. 2010 Non-Linear Mechanics of Materials (Springer Dordrecht Heidelberg London New York) p 450

  3. Mangana R, Destrade M, Saccomandi G. 2016 Extreme Mechanics Letters 07004

  4. Agirre-Olabide et al 2017 Smart Mater. Struct. 26 035021

  5. Nam T, Petríkova I and Marvalova B 2020 Polymer Testing 81 106272

  6. Asaro R and Lubarda V 2006 Mechanics of Solids and Materials (Cambridge University Press) p 881

  7. Lakes R 2009 Viscoelastic materials (Cambridge University Press) p 480

  8. Galipeau E, Castañeda P 2013 Proc R Soc A 469: 20130385

  9. Marckmann G, Verron E 2006 American Chemical Society 79 (5), 835

  10. Saxena P, Hossain M, Steinmann P 2013 International Journal of Solids and Structures 50 3886

  11. Furer J, Castañeda P 2019 Journal of the Mechanics and Physics of Solids 103689

  12. Golub V, Maslov B and Fernati P 2016 International Applied Mechanics 52 165

  13. Maslov B 2008 Journal Engineering Mathematics 61 339

  14. Maslov B 2018 International Appl. Mechanics 54 220

  15. Parnell W, De Pascalis R, 2019 Phil. Trans. R. Soc. A 377: 20180072

  16. Golub V, Maslov B and Fernati P 2016 International Appl. Mechanics 52 111

  17. Balbi V, Shearer T, Parnell W 2018 Proc. R. Soc. A 474 20180231

  18. Maslov B 2017 Mechanics and Advanced Technologies 1 5