Конференції Національного Авіаційного Університету, AVIATION IN THE XXI-ST CENTURY 2020

Розмір шрифту: 
Application of fiber-optic sensors for the aircraft structure monitoring
Ruslan Zakirov, Fefuza Giyasova

Остання редакція: 2021-04-23


Aircraft Health Monitoring (AHM) has become a very important tool in modern commercial aircraft maintenance. One of the most important components of AHM is the aircraft structure health monitoring (SHM) which  allows you to diagnosemicrodamages and mechanical stresses in the aircraft structure by using of none-destructive test methods . This task is very important due to the widespread using of composite materials in the aircraftproduction  industry. This article proposes a method for implementing of SHM using fiber optic sensors integrated into a composite aircraft structure. Photodetectors for SHM system overview and it’s analysis also given.

Ключові файли

aircraft, structure, health monitoring, fiber-optic, Bragg grating


[1]          Zhu P., Xie X., Sun X., Sotoac M.A. Distributed modular temperature-strain sensor based on opti-cal fiber embedded in laminated composites. Composites Part B: Engineering. 2019. Vol. 168. P. 267–273.

[2]          Yu H., Wang Y., Ma J., Zheng Z., Luo Z., Zheng Y. Fabry-Perot Interferometric High-Temperature Sensing Up to 1200°C Based on a Silica Glass Photonic Crystal Fiber. Sensors. 2018. Vol. 18. 273 р.

[3]          Yoshino T., Kurosawa K., Itoh K., Ose T. Fiber-optic Fabry-Perot interferometer and its sensor applications. IEEE Journal of Quantum Electronics. 1982. Vol. 4. P. 626–665.

[4]          Hartog A.H. An introduction to distributed optical fibre sensors. CRC Press, 2017. 442 р.

[5]          Wei H., Zhao X., Kong X. et al. The Performance Analysis of Distributed Brillouin Corrosion Sensors for Steel Reinforced Concrete Structures // Sensors. 2014. Vol. 14. Р. 431–442.

[6]          Sai Y., Zhao X., Hou D., Jiang M. Acoustic Emission Localization Based on FBG Sensing Net-work and SVR Algorithm // Photonic sensors. 2017. Vol. 7. No. 1. P. 48‒54.

[7]          Tian Z., Yu L., Sun X., Lin B. Damage localization with fiber Bragg grating Lamb wave sensing through adaptive phased array imaging // SAGE Publications Structural Health Monitoring. 2019. Vol. 17. Issue 1. P. 334–344.

[8]          Yu F., Okabe Y. Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000°C Environment // Sensors. 2017. Vol. 17. Р. 1–14.

[9]          Ramakrishnan M., Rajan G., Semenova Y., Farrell G. Overview of Fiber Optic Sensor Technolo-gies for Strain/Temperature Sensing Applications in Composite Materials // Sensors. 2016. Vol. 16. Р. 1–27

[10]      Sun J., Guan Q., Liu Y., Leng J. Morphing aircraft based on smart materials and structures: A state-of-the-art review // Journal of Intelligent Material Systems and Structures. 2016. Vol. 27 (17). P. 2289–2312

[11]      MacDougal M., Hood A. et. al. Part of the SPIE Infrared Technology and Applications XXXVII. 2011. V. 8012. No. 21

[12]      Dhar, N. K. Advances in Infrared Detector Array Technology. N. K. Dhar, R. Dat, A. K. Sood. Optoelectronics - Advanced Materials and Devices. S. L. Pyshkin, J. M. Ballato – January, 2013 – p. 149 – 186.

[13]      Karimov A.V., Yodgorova D.M., Abdulkaev O.A. Physical principles of photo-current generation in Multi-Barrier Punch-Throungh-Structures Second chapter of book “Photodiodes - World Ac-tivities in 2011” edited by Jeong-Woo Park. – InTech, 2011. – pp. 23-36. [ISBN: 9789533075].